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Abstract
The Monte Carlo program ACAT was developed to determine the total sputtering yields
and angular distributions of sputtered atoms in physical processes. From computer
results of the incident-energy dependent sputterings for various ion-target combi-
nations the mass-ratio dependence and the bombarding-angle depeﬁdence of sputtering
thresholds was obtained with the help of the Matsunami empirical formula for sput-
tering yields. The mass-ratio dependence of sputtering thresholds is in good agree-
ment with recent theoretical results., The threshold energy of 1igsht-ion sputtering
is a slightly increasing function of angle of incidence, while that of heavy-ion
sputtering has a minimum value near 6 = 60°.
The angular distributions of sputtered atoms are also calculated for heavy ions,
medium ions, and light ions, and reasonable agreements between calculated angular

distributions and experimental results are obtained.



I. Introduction

The low-energy sputtering is one of the most important problems for the plasma
surface interactions, because the sputtering is one of the main impurity vrelease
processes form the first wall of tokamaks. The energy of ions and neutral atoms
near the first wall is less than 100 eV. There is no theoretical formula which can
predict the sputtering yields for such low-energy ions.

Since the Sigmund theoretical works on sputteringl, numerous publications have
been published. Analytical studies based on the linearized transport equation
should introduce some special simplifying assumptions. For very low-energy sput-
tering, the most unrealistic assumption is to neglect the boundary effect. Further-
more it should be noted that the transport equation includecsthe infinite number of
the binary collisions. When the ion energy is in the near-threshold region, the
collision number is limited due to the finiteness of the target medium and the large
mean free path of the low-energy recoil which becomes comparable to the average
lattice constant,

In view of these difficulties, computer simulations of the collision processes
near the solid surface appear worthwhile for studying the low-energy sputtering.

At present there are two methods of computer simulations on atomic collisions in

d2’3’4 and the molecular dynamics methodb’G.

solids, i.e., the Monte Carlo metho
The molecular dynamics method is the powerful method for low-energy atomic collisions
in solids and can treat the simultaneous collisions of moving atoms with low-energies.
The application of this method to the polycrystalline target or the amorphous target,
however, is  time-consuming . Since the full molecular dynamics cannot be
applied to the amorphous target, one should calculate the sputtering yields for
various crystal axes and after this one should average them. The Monte Carlo method
is more convienient for practical applications. However, the Monte Carlo simulation
is usually based on the binary collision approximation which is a rough approximétion
for the collision of very low-energy ions, and so one needs some idea in simulating
sputtering processes by the Monte Carlo method.

Up to now we have several Monte Carlo simulation programs,i.e., MARLOWEZ TRIM.SP%

ACAT? and Ishitani-Shimizu codesa. In the first three programs the scattering angle
at each collision is a function of the impact parameter and is numerically calculated
using the screened Coulomb potential, while Ishitani and Shimizu used the differential
cross section at each collision and the concept of the mean free path which is often
used in the neutron slowing down problem.

The MARLOWE code was ovriginally developed to simulate atomic collisions in a
single cr&stal solid. 1In order to apply this code to the amorphous target, the

crystal axis should be rotated randomly in three dimensions before each collision.



On the other hand , the. TRIM codezhasbeen designed to simulate atomic collisions
-1/3 X
(N is

the number density of target atom) and the impact parameter is randomly selected

in the random tavget assuming the fixed mean free path with the value N

at each collision. Recently Biersack and Eckstein8 modified the previous existing
TRIM code in order to follow the recoil atoms as well as ions. This modified TRIM
code is named as TRIM.SP. In the TRIM.SP program the simultaneous scattering events
are effectively taken into account.

In the ACAT program an amorphous target is simulated emplying the so-called cell
model, in which a target atom is iandomly selected in a simple cubic cell with a
lattice constant R0 = N_l/B. In the MARLOWE and ACAT codes, the position of an atom
is uniquely determined, and the impact parameter is calculated through the relation
between the direction of the moving particle and the position of the target atom.
Therefore the too-low-energy particle cannot f£fly any more automatically because
the apsidal distance is too large. Because of the simplicity of the TRIM and ACAT
codes, these two codes are by more than ten times faster than the MARLOWE code .

Ag a matter of course, both the TRIM and the ACAT codes cannot be applied to a
single-crystal target.

In this report we have improved the previous existing ACAT code3 so as to treat
more reasonably the surface scatterings of leaving particles from the solid surface.
The effect of the surface scattering of outgoing particles is very important for
angular distributions of sputtered atoms and reflected ions, especially in the case
of grazing angles of incidence. The main concern of this report is to show the
validity of the ACAT code. For this purpose we calculate the total sputtering
yields and associated angular distributions at normal incidence and oblique incidence.
As an application sputtering thresholds will be derived from calculated sputtering
yields with the help of the Matsunami empirical formula which was proposed by the
Sputtering Data Complilation Croup under the joint research program at Institute of

Plasma Physics, Nagoya University.9

. The ACAT Program

The ACAT program was developed to simulate the atomic collisions in an amorphous
target within the framework of the binary collision approximation, and in the ACAT
program the target atom is randomly distributed in each unit cubic cell of which
the lattice constant is R0 = N-l/B. The particle is assumed to move only along the
straight-line segments, these being the asymptotes of its path in the laboratory (L)
system,

The atomic collisions are considered to be composed of an elastic part and the



electron excitation part.The trajectories of two particles interacting according to
a conservative central repulsive force are shown in Fig. 1, which defines several
terms of present interest. The equation of motion which describe these trajectories
can be manipulated in the usual manner to yield the scattering angle in the center-
of-mass (CM) system8
o0 =m-2p [ arlrlg(x)1™} W

o

and time ihtegral

2)-1/2 -1/2

T=(f - D - [arlle@™t - @ - P2 H Ay, @)
%o
where
g(x) = [1 - p%/2% - vy /e 1Y/, &)

P is the impact parameter, Er is the relative kinetic energy, r is the interatomic
separation, V(r) is the interatomic potential, and *, is the apsidal distance defined
by g(r) = 0. The relative kinetic energy is

r A+1°0° ‘ (4)

where EO is the incident kinetic «acrcgy of the projectile and A = M2/Ml is the ratio
of the mass of the target atom M2 and that of the projectile M,. In the ACAT code,
the CM scattering angle and the time integral are initially calculated by four-pcint
Gauss-Legendre quadrature according to Everhart's method10 and are stored in the
two-dimensional matrix. The scattering angle and the time integral at each collision
are evaluated with the help of the two-dimensional interpolation formula,

In constructing the traijectory of the projectile, cne has to note that the
deflection point is shifted backward in the L system by an amount Axl, which is
shown in Fig. 1. For the trajectory of the recoil atom the starting point is shifted
forward by an amount sz from the initial position of the target atom. The explicit
expressions of Axl and sz are as follows:

Mx, = [2T + (A-1) p tan —g— /(1 + A), (5)

Ax, = ptan —g— - bx, ' (6).

The interatomic potential V(r) can be chosen in the ACAT program from six optioms,

3

i.e., the Moliere yotentialll, the Kr-C potentiallz, the Ziegler potential1 » the
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Lenz-Jensen (LJ) potentia114, the aLJ potentialls, and theaMLJ potentiall6 (Table 1).
In the present calculations we employed the Moliere approximation to the Thomas-
Fermi potential

2
Z.Z,e
V) = 2 e(r/a) , 7
where
®(x) = 0.35exp(~0.3x) + 0.55exp(~1.2x) + 0.1l0exp(~6.0x%) (8)

a is the screening length, and Zl and 22 are the atomic numbers of the projectile
and the target atom, respectively.

In the ACAT program the electronic energy loss AEe can be chosen from three
options: 1) The trajectory-dependent energy loss model (non-local). This model

is independent of the impact parameter, i.e.,
AE, = L NS_(E) , 9

where Ly is the distance between collisions, and S,(E) 1s the electronic stopping
cross section. TFor hydrogen we used the four-parameter fitting formula17 of the

electronic stopping cross section which was originally proposed by Varelas and

Biersack18
-1 _ JH (-1 H -1
where
H _ 2045
Spow = A4F , (11)
)
H -
Surem = (A2/E) In [1 + (A3/E) + A4],
and four parameters in Eq .. (11) are stored in the ACAT code.
For helium isotopes we used the five-parameter fitting form,ulals’19 of the Ziegler
table
-1 _ ,.ke .-1 He -1
S (B) T = Sy T+ Gyprey) o (12)
where
Srow = AE 2 (13)
He - ' s Vs 1=
SHIGH (A3/E)]J1[l + (AB/E) + ASE] R (14)

E is the He energy in keV, and these five parameters are stored in the ACAT code.
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For other Theavier ions, the Lindhard-Scharff energy loss model is employed];9 i.e.,
2
se(®) = K EZ, (1)

where the Lindhard electronic stopping coefficient KL is given as

' 716
1.2122./'° z
N N 1/2 s2
= [(eM)™ . A7]. (16)
; @25 2l

2) The Oen-Robinson energy loss model (1ocal)?0 This model depends on the impact
parameter p through the apsidal distance in the binary collision, i.e.,

0.045
MEq = —————— So(E) expl - 0.3r,(p,E)/pl, @an
ma2(l - o)
where the factor (1 - o) is a correction term due to the finitemess of the impact
parameter in the solid, and Sg(E) is the electronic stopping cross section which
is given by Eqs. (10), (12) and (15) for hydrogen, helium, and heavier

ions, respectively. The explicit expression of o is as follows:
o= (1 &-0.18611R0/a)exp( - 0.18611R0/a) . (18)

3) The mixed model. fThe third consists of a combination of the previous non-
local model and the Oen-Robinson (OR) local model. In the computer simulation of
sputtering phenomens recoil atoms with very low-energies are moving in the solid,
and their free paths are too short to apply the non-local model for the electronic
energy loss, because the non-local model is the macroscopic representation of the
electronic energy loss process. 1n the mixed model of the ACAT code, for A(E) < 5R0,
the electronic energy loss is calculated by the OR local model, and for A(E) > SR0
it is estimated by non-local model. Here A(E) is the effective mean-free-path which
is given as A(E) = 1/ﬂNb2, where b is the collision diameter defined by b = rO(O,E).
The procedure o searching the collision partner of the ACAT program is very
simple. Let the projectile move in the direction e,. The notation "projectile"
is used here for the ion or any recoil atom moving in solids. In the ACAT program,
the projectile flies from the position R step by step by an amount Ax along the
direction €p (see Fig. 2). The position of the projectile R, after n times step is
R + nAxep, and the unit cell belonging to R, is easily determined dividing each
component of R, by the average lattice constant RO' If the unit cell of R, is
different from that of the original position R, a target atom is produced randomly
in a new unit cell using three random variables, and this target atom is a collision

partner.



Let the position of the target atom be R, which is sliown in Fig. 2. Then, the
A .

impact parameter p is given as .

&

|(R, ~ R) x e]
p= —a AR )
IRA—Rl
&\

fhe CM scattering angle and the time integral for this collision are easily obtained
from the pre-calculated two-dimensional matrix.

In the ACAT code we introduced two different coordinates. The one is the absolute
coordinate fixed to the target, where the x-y plaie is on the solid surface, and
the direction of the z axis is opposite to the surface normal. The other is the
moving coordinate which is fixed to the moving projectile, where the direction of
the z ~axis is equal to ep- In Fig. 3 these two coordinate are schematically
shown in the spherical trigonometry. The X, Y, and Z in Fig. 3 correspond to the
x, y, and z axes of the absolute coordinate, while the A, B, and P to the x, y, and

z axes of the moving coordinates. The direction e, of the A axis is chosen to be

e X [e. x (R, - R)] ‘.
eA - P P A . (20)
P

and the direction ey of the B axis is [eA X eP]. The direction S in the P-A plane

is that of the scattered projectile after the collision, and 6 is the scattering

angle in the L system which is given as

1 Asin©

Ot T hcosd (2D

The direction eé of the projectile after collision is represented by

sin§
0, (22)
cosf

I

in the moving coordinate. Transforming the bases of the Eoving coordinate into
' 1

those of the absolute coordinate yields the direction S in the absolute system

which is obtained as follows:

=T a! ’ .
e, =Teg , , (23)

vhere § = (eA, 2ps ép) is the inverse matrix of the tranformation matrix between
two bases.

The surface scattering with the target atom at the topmost layer, which is
suffered by an incoming or outgoing particle, is very important for the angular
distributions of reflected particles and sputtered recoi%latoms, especially for

oblique incidence. In the ACAT program the procedure of éearching the collision
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partner of the :.particle moving in the vacuum is two-dimensional. Ir- other words,

the projected position moves on the so0lid surface as the projectile does in the
vacuum as if a shadow of an airplane moves on the earth surface. Figure 4 shows

how to search the collision partner of an outgoing particie, where the positions

R and ﬁnare the projected ones of R and R, respectively. Similarly to the searching
procedure in the bulk we can determine a new unit cell which the position R, belongs
to'ané get the candidate for the collision partner. In the case of the bulk the
target atom obtained like this is always a collision paftner, but for surface scat-
tering we should check whether the binary collision approximation is allowed or not.
Inside the solid the roughness of the binary collision approximation is smeared out
statistically due to subsequent collisions. In the case of the surface scattering

of the outgoing particle with the surface atom its total scattering angle -which

is measured from the incident direction - is always enlarged due to the surface
scattering, and the roughness of the binary collision approximation will be enhanced
if any target atom in the new unit cell is allowed as a collision partner. In the
ACAT program the target atom in a new unit cell is accepted as a collision partner

if (R - RA)-eP - Axl + Rolep X ezl > 0, where the last term of this inequality

comes from randomness of the surface atom, and e, is the direction of the z axis

of the absolute coordinate fixed to the target. This procedure of searching the
collision partner is repeated until the impact parameter between the leaving particle
and the surface atom is larger than R

0
impact parameter is regarded as escaping the repulsive potential region of the

, and this leaving particle with the large

solid surface.

The surface binding energy Ug has a significant influence on the total sputtering
yields, and also on the angular and <nergy distributions of sputtered atoms. As
the surface binding energy, we have used the sublimation energy Eg data which
are stored in the ACAT program. The surface binding energy acts in the form of
‘a planar attractive potential upon the atoms which are leaving the surface, and
results in a refraction or even a reflection back into the solid, depending on
energy and angle of the leaving atom.

For the cascade development we have used three parameters, i.e., the bulk binding
energy EB’ the displacement energy E3, and the minimum energy E. until which the
the cascade continues to develop. These three parameters are the input data.
Let us consider a collision from which the original projectile emerges with kinetic
energy El after transfering kinetic energy T to the target atom. The target atom
is displaced if its energy exceeds a sharp threshold energy Ejq. It may be required
at the same time to overcome a bulk binding energy:EB X Eq. If T > Eq, the target
atom is added to the cascade with the kinetic energy

E, =T-E; . (24)




The cascade develops continuously so long as their energies exceed a preassigned
value E.. In Fig, 5 a typical example of the cascade development in solids is shown
shown, where 10 keV Ar+ ions are bombarded cn a copper target.

‘ Once a new recoil atom is ejected from its original site a vacancy will be left
even for the case aof replacement collision which takes place when T > Eq and Ej is
less than the lesser of E, and Ej, because this trapped projectile still has kinetic
energy which must be dissipated before it gets the well-defined position. The time
required for this energy dissipation will exceed the time needed to generate the
cascade. Rouhgly speaking, the bulk binding energy will be of the order of the
vacancy formation energy, i.e., about 1 eV for fcc metals and about 3 eV for bce
metals.

There are several models for the bulk binding energy in the simulatiom of sputtering
processes. However, bulk binding energies are of little influence on the sputtering
results? because EB is usually small compared with the transfered energy at high
energy bombardment. Moreover most sputtered atoms originate in the surface layer
where the binding eneigy EB is not equal to the vacancy formation energy in the bulk.
On the ther hand sputtering phenomena is in a sense a tramsient one which is differnt
from other radiation phenomenon such as radiation damage where the displacement
enecgy Eqy is of the order of 25 eV. The displacement energy is the minimum energy
required to produce the stable Frenkel pair. Since almost all sputtered atoms
originate in the surface layer, we need not use the criterion whether the recoil atom
get the kinetic energy enough for the stable Frenkel pair or not. Then, in the
case of simulating sputtering process the following simple model is used in the ACAT
program:

E, =0, E, = E

B E,.=E

4 = Eg» Ug = Eg. (25)

S’

II. Results and Discussions

In this report the ACAT program has been applied to calculating low-eneréy
sputtering yields and the associated angular distributions of sputtered atoms for
normal incidence and oblique incidence. 1In order to study the mass-ratio dependence
of sputtering thresholds, first of all, the energy dependence of sputtering ylelds
is calculated for various ion-target combinations. Secondly, in order to obtain
the bombarding-angle dependence of sputtering thresholds, the bombarding-angle
dependence of sputtering yields are simulated for very low-energy ions. As the
ion~target combinations we adopted H+Ni, Ar+-Cu, and Hg+Ni combinations which correspond
to light~ion, medium~ion, and heavy-ion sputterings, respectively. In this report

we classified the ion-target combination into three categories from the mass-ratio
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between the atomic mass of target atom and that of projectile, i.e.,

1) light-ion sputtering (MZ/Ml > 10),
2) medium-ion sputtering (10 > Mé/Mi > 1),
3) heavy-ion sputtering (M2/M1 < 1).

The border line between light-ion sputtering and medium-ion sputtering is not clearly
defined.

Weissmann and Behriscth attempted to separate the sputtering mechanism into two
parts (see Fig. 6): one due to collision cascades created by incoming ions directly
and the other due to collision cascades generated by ions
interior of the solid, i.e.,

(AL S S (26)

The former process is the main sputtering mechanism for heavy-ion sputtering, while
the latter mechanism is dominant for light-ion sputtering. The high-energy medium-
ion sputtering behaves as heavy-ion sputtering, while the very low-energy medium-ion

sputtering will obey the same sputtering mechanism as light-ion sputtering.

3.1 Low-energy sputtering yields and sputtering thresholds at normal incidence

In order to obtain the preliminary descriptions of low-energy sputtering yields,
the empirical formula have been proposed by Bohdansky22 and Yamamura et al.23
These formulae have the following two features: 1) When the ion energy is so high
that the recoil density can be described in the asymptotic form, these empirical
formulae become- equal to the original Sigmund formulal. 2) These formulae include
the effect of sputtering thresholds which are determined empirically.

About 25 years ago, Harrison and Magnuson24 investigated the sputtering thresholds
for a crystalline target based on the Silsbee chain model. Their theory cannot be
applied to heavy-ion sputtering, because their formula was derived assuming a single
collision }eorientation to the Silsbee chain. Considering the main process leading
to threshold sputtering of light ions, Behrisch et al.25 have derived intuitively

the thresholdenergy of light-ion sputtering

u
= ——8
Em = YT -7 (27)
where vy = 4M1M2/(MI+M2)2 is the energy transfer factor.
Under these circumstances it is very important to investigate sputtering thresholds
for various ion-target combinations. For this purpose, in this report, the mass
ratio dependence and the bombarding angle dependence of sputtering thresholds have

been studied using the present ACAT program.
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Figures 7 and 8 show the energy dependences of sputtering yields for wvarious ion-
target combinations, where the ACAT results are compared with measured data. In Table 2
we show the screening lengths and the surface binding energies used in the present
calculations and in Table 3 the contributions of Mechanism 1 (YI), Mechanism 2 (YI[)’
and primary recoil atoms (Yp) are shown explicitly for typical three energies, where No
is the number of primary ions. For too-low-energy ions the difference between Y. and

I
Y.. is not clear, because the collision events take place only near the surface. The

aZieement between ACAT results and measured data is very good. In the case of very
low-energy light-ions and medium-ions the majority of sputtered atoms are primary recoil
atoms, while for very low-energy heavy-ions primary recoil atoms cannot be sputtered.

As the incident energy becomes higher, the contribution of Mechanism 1 becomes more
important for medium~ion sputtering, while Mechanism 2 is dominant for light-ion sput-

tering even for high energy ioms.

It is a time-comsuming problem to determine the threshold energy directly from the
computer simulation, because we need a large number of primary ions for the near—threshold
sputtering. In order to avoid this difficulty, here, we use the following empirical

formula3’9:

G.(Mz/Ml)
Y=A —— S,*(E)[1~ (E/E
US

1/2
e T (28)

which includes the effect of sputtering thresholds, where E . 1is the threshold energy

th
at normal incidence, A is an energy-independent constant, a(M;/M;) is an energy-independ-
ent function of the mass ratio M2/M1, and S,*(E) is the effective nuclear stopping cross

section which is defined as

Sn(E)
T+0.350_s.(8) °

Sp* (E) = (29)
Here, S,(E) is the nuclear stopping cross section, and s,(e) is the LSS reduced electronic
stopping cross section which corresponds to Eq. (15). The nuclear stopping cross

section S,(E) is calculated using the Ziegler universal nuclear cross section which is

represented in the LSS reduced energy € 17
_ 0.51n (1 + 1.1383¢)
Sn(€) = 0.21226 0.5 ° (30)
€ + 0.013218¢ + 0.19594¢

Some rearrangement of Eq. (28) yields the following simple equation:26

1/2

=5, (3D)

v* = a2 - E,



where A is an energy-independent constant, and

1/2 Y 1/n

® _ . S
Y E ( S (B) ) . (32)
Equation (31) tells us that if one plots Y* against E]‘/2 w2 can determine the threshold
energy from the point of intersection of Y* with the El/2 axis.

In Ref 3 n=2 was used as the exponent of the square bracket in Eq. (28), but recent

works revealed that n=2.8 is better than n=29. The liunearity of Y* is shown in Figs.

9 and 10. The yield data in Fig. 9 are ACAT results, and the solid lines in Figs. 7
and 8 correspond to the solid lines in Fig. 9. The threshold energies are also determined
from measured data in a similar manner, which is shown in Fig. 10. The exponent n=2
always gives the larger threshold energies than the exponent n=2.8, of which the threshold
energies are coincident with those of Eq. (27) for light~ion sputtering. Then in the
following discussions we employ n=2.8 as the exponent of the square bracket in Eq. (28).
Table 4 shows threshold energies which are obtained from Eq. .(4) using the ACAT data,

and they are plotted as a function of the mass ratio Mp/M; in Fig. 1l. The solid line

in Fig. 11 is

_ 0.567
E,,/Us = 0.214 + 4.77(M1/M2)

+ 0.256 (My/Myp) . (33}

In Fig. 12 we compare the ACAT threshold energies with the experimental threshold energies
which are obtained from Eq. (31) using the measured data. The n=2 curve corresponds to
ACAT threshold energies which are obtained from Egs. (31) and (32) with the exponent

n=2 (see Table 4), while the n=2.8 curve corresponds to Eq. (33).

3.2 Few collision approach for threshold sputtering at normal incidence

Refering the computer works on very low-energy sputtering, Yamamura and Bohdansky27
picked up some possible collision sequences for near-threshold sputtering which are shown
in Fig. 13 and 14. In the case of Mechanism 1 the primary recoil atom leading to the
emission process is produced at the first collision of the projectile with surface atom,
while in Fig. 14 the primary recoil atom leading to sputtering is created after a few
collisions. Mechanism 1 and Mechanism 2 of these figures correspond to those of Fig. 6.
Additional distinctions, A, B, C, and D in Figs. 13 and 14 correspond to different number

of collisions which a sputtered atom experiences before ejection.

Assuming that any configuration of each target atom is allowed for threshold sputtering,
they derived a simple analytic expression for the "threshold energy" of each mechanism
in Figs. 13 and l4. Each mechanism has its own 'threshold energy", and the lowest
"threshold energy" is comsidered as the real threshold energy for the special ion target

combination. Tables 5 and 6 show analytic expressions for the '"threshold energies" of
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each mechanism listed in Figs. 13 and 14, where m is the collision number at the deeper
layer than the topmost layer, Ol is the CM scattering angle at the first collision, )
and 6 are the scattering anglesin the L system which are represented in terms of Gl

-1 sinOp (34)

8 = tan u + cosO1

-1 usinOg

t SR S
an 1+ ucosOl : (35)

D» -
]

with the definition of p = Ml/MZ, and o is the angle of incidence.

Formula for Mechanism 1D and Mechanism 2C include the unknown ﬁarameter m, i.e.,
the collision number m. For light ions, the m~dependence of the threshold energy
is very weak. From theoretical point of view, it 1s very difficult to determine this

collision number m precisely, because m is the effective number of the binary collisions

which the moving particle experiences near the surface. According to computer simulation

of low-energy sputtering, this number is very small, since the collision events available

for threshold sputtering do not occur in the deeper layer.

Comparing theoretical threshold energy with experimental values Yamamura and Bohdansky

choose m=2 as the collision number included in theoretical formulae. Substituting m=2
and 0=0 into the formulae of Mechanism 1D and Mechanism 2C, we have simple formulae

for threshold energy at normal incidence

'4306 Us
‘3 Y M, > M, (36)
Ep = Ug  2M; + 2M, 6 < n
Y Ml + 2M2 1 2

In Fig. 15 we compare theoretical formula Eq. (36) with experimental threshold energies
which are determined from Eq. (31). The solid line means the present theoretical
values, and other marks means experimental threshold energies. The agreement between

theory and experiment is very good.

3.3 Angular distributions of sputtered atoms at normal incidence

Using the ACAT program, the angular distribution of sputtered atoms is calculated
for low-energy ions at normal incidence. As the ion-target combinations we choose
Hg+—Ni, Ar+;Cu, and H+—Ni which correspond to heavy-ion, medium-ion, and light-ion
sputterings, respectively. In Fig. 16 we draw the angular distributions of sputtered
atoms for Hg+4 Ni, where incident energies are 100 eV and 1000 eV. The angular distri-
bution of 1000 eV Hgf+ Ni is nearly the cosine-distribution, while that of 100eV Hg+4Ni



shows the strong under-cosine distribution. According to a few-collision mode127,

possible sputtering mechanisms are Mechanism 1D and Mechanism 1C for 100eV Hg+-Ni.
Sputtering yield of Mechanism 1C is larger than that of Mechanism 1D, because the
former mechanism is the four collision process. The preferential angle of this process

is about 55°, while the preferentialangle of the ACAT distribution is about 55°.

Fig. 17 shows the angular distributions of sputtered atoms for 50eV Ar+4Cu and 100eV
Arf+Cu, while those of 1000eV Ar+#Cu are drawn in Fig. 18. As the incident energy
becomes lower, the angular distribution become the under—cosine distribufion. The
angular distribution of 50eV Ami;Cu is very similar to that of 100eV Hgf;Ni. The
possible mechanisms are Mechanisms 2C, 2B, and 1D for 50eV Arf;Cu, and the largest
sputtering yield comes from Mechanism 2B of which the preferential angle is about 56°.

The agreement between theory and simulation is very good.

Fig. 19 shows the angular distributions of sputtered atoms for light-ion sputtering, {
i.e., 100eV H>Ni, 450eV H>Ni, and 1000eV H>Ni. The angular distributions of high
energy ions have the dip at the surface normal, while that of the near-threshold energy
has a peak at the surface normal. For 100 eV H+ ion the possible mechanisms are 2C, 2B,
and 2A whose preferential ejection angle is nearly 0° according to Yamamura and

Bohdansky théory.

3.4 Low-energy sputtering yields and sputtering thresholds at oblique incidence

In Fig. 20 we shows the bombarding-angle (0. ) dependence of sputtering yields for
1ow—energy ions, where as the ion-target combinations we choose HE—Ni Ar+FCu, and
—N1 which correspond to heavy-ion sputtering, medium-ion sputtering, and light-ion
sputtering, respectively It is very interesting that in the case of Hg *Nl, even if
the ion energy is lower than the threshold energy at normal incidence, a finite number
of target atoms are sputtered for oblique incidence and that the low-energy heavy-ion
sputtering yields are strong increasing functions of the angle of incidence up tod =
60°. In the case of light-ion sputtering such as Hf+Ni, the sputtering yield of the
near-threshold ions is nearly constant up to 60°, and it drops rapidly for o >70° due

to surface scattering.

For not-too-oblique incidence the parameter “(MZ/Mi) of Eq. (28) is not a function
of incident energy, but of angle of incidence. For grazing angle of incidence it may
become a function of both incident energy and angle of incidence. In Fig. 21 values

1/2

of a < 60° the linearity of Y* is very good, while at o = 80° Y* is no longer linear.

of Y* are plotted against E for various angles of incidence for H+;Ni. In the region

Then, the threshold energy of grazing angles of incidence will include a large ambiguity
due to the bad linearity so long as we use Eq. (31) in determining the threshold energy

at grazing angles of incidence.



The bombarding-angle dependences of threshold energles of Hg+fNi, Ar+—Cu, and H+—Ni
are shown in Fig. 22, The solid lines ar; the present results, and the vertical error
bars mean the ambiguities due to the poor linearity of Y* versus Ellz. In the case
of light-ion sputtering the ACAT threshold energy is a slightly increasing function of
angle of incidence 0, while that of heavy-ion sputtering has the minimum value near
o = 60°, The strong a-dependence of the near-threshold sputtering of heavy ions in the
region of 0 < 60° can be explained by the fact taht the threshold erergy of heavy-ion
sputtering is a decreasing function of o until 60°.

A few-collision sequence model27 indicates that the threshold energy for small angles

of incidence is given as

Ug 1
Y gl At oy My > My
6
Ein N 6 (37)
Y ( 1 + pcos([(w-a)/3] ) M1< M,

which is obtained from Tables 5 and 6 if we use m=2 as the collision number. Equation
(37) tells us some interesting bombarding-angle dependences of the threshold energies.
In the case of Ml > MZ the threshold energy shows a universal dependence on hombarding-
angle, which comes from the fact that the moving atom in solids is always a target
atom., This means that the mass-ratio dependence is expressed only by 1/y. 1In the

case of Ml < M2 the o~-dependence is more complicated and depends also on the mass-ratio.

For light ions, however, the threshold energy has only a weak dependence of a.

When the angle of incidence becomes larger we should take into account the shadowing
effect and the periodicity of surface atom527. In Fig. 23 the relative threshold
energies of different mechanisms are plotted as a fucntion of angle of incidence for
Hg+Ni, Ar+Cu, and H+Ni combinations. Each dash line means the analytical formula of
Eq. (37), and the solid lines with different marks indicate the numerical solutuions
when the shadowing effect and the periodicity of the nearest neighbor surface atoms
are taken into account. For different mechanisms the data are calculated until the
total reflection occurs. In the case of Hg+Ni combinatiori, the threshold mechanism
is Mechanism 1D for small angles of incidence, and Mechanism 2B becomes the threshold
mechanism for grazing angles of incidence. Another interesting aspect of the a-depen-
dence of HgtNi is that thc threshold energy is a decreasing function of o until 60°.
This tendency is exactly coincident with that of the ACAT threshold energy. In the
case of medium-ion sputtering such as Ar+Cu combination the a~-dpendnece of threshold
‘energy is more complicated than other two cases. For small angles of incidence the

threshold mechanism is Mechanism 2C, and around o = 55° the threshold mechanism is




Mechanism 1D. For grazing angles of incidence Mechanism 2B becomes the threshold
mechanism. The bombarding-angle dependence of light-ion sputtering thresholds is

much different from medium-ion and heavy-ion sputtering thresholds. Threshold energies
of Mechanisms 2A, 2B, and 2C have the almost same values until 80°, but for larger
angles of incidence than 80° the threshold mechanism is Mechanism 2B. The real threshold:

energy of light-ion sputtering is nearly constant until 85°.

From Fig. 23 we can derive a common feature. For small angles of incidence many
collision process is the threshold mechanism, while tor larger angles of incidence

the simpler mechanism becomes important. In the case of heavy-ion sputtering the
threshold mechanism at small angle of incidence is Mechanism 1D whose threshold energy
is a decreasing function of angle of incidence, while that of light-ion sputtering is
Mechanism 2C whose threshold energy is nearly constant. The threshold mechanism of
medium-ion sputtering depends strongly on angle of incidence, because the energy

transfer at a single collision is relatively large as compared with light-ion collision.

3.5 Angular distribution of sputtered atoms at oblique incidence

Using the ACAT program, we calculated the angular distributions of sputtered atoms
at oblique incidence, where we chose Hg+; Ni, Axﬁ; Cu, and Ht- Ni as the ion-target
combinations. In order to reduce the statistical error we used large acceptance solid
angle, i.e., AB = 10° and A = 40°, where AB and Ad are the intervals of polar angle
and azimuthal angle of sputtered atoms, respectively. This acceptance solid angle is

too large for grazing angle of incidence, especially for light-ion sputtering.

In Fig. 24 we show the angular distributions of sputtered atoms for 1000eV Hg - Ni.
The preferential angle of ejection depends on the angle of incidence. Figure 25 shows
the angular distributions for 100eV Hg - Ni. It is very interesting that the preferentis
angle does not depend on angle of incidence. This is mainly due to the fact that the
preferential angle of sputtered atoms for near-~threshold sputtering is determined by

surface scattering.

In Figs. 26, 27, and 28 we show the angular distriButions of sputtered atoms for
100eV Ar ions, 100eV Ar ions, and 50eV Ar ions, respectively, which are bombarded on
copper targe with different angles of incidence. 1In the case of 1000eV ions, the argon
ions can penetrate deeply into the solid for a = 40° and o = 60°, and so the backward
component of angular distribution is nearly equal to that of normal incidence. Imn
the case of 50eV ions the prefgrential angle does not depend on the angle of incidence.
This characteristic aspect is similar to the case of 100eV Hg+ - Ni.

In Figs. 29 and 30 we compare the ACAT angular distributions with the TRIM results

and the measured distributionszs’zg. As is known from the measured angular distributions



i the angular distributions of light-ion sputtering at oblique incidence are composed of

i two parts, i.e., one due to the direct knogk-off process at the topmost layer30 by the

; incoming ions and the other due to the collision cascade by ions reflected from the

: deep layer in solids. The former part has the explicit preferential angle of sputtered
% atoms, while the latter part makes broad peak near the surface normal. The ACAT distri-
§ butions include the contribution from the second component, but its contribution is not

so clear as compared with the measured distributions due to too-large acceptance solid

angle.

In order to know the contribution of the collision cascade generated by backscattered
ions more clearly we follow the reflected position xp of the ion w@ich returns back to
the surface and generates the recoil atom leading to sputtering. In Fig. 31 we show
the xp—dependence of the angular distributions of sputtered atoms for 450eV H+-+ Ni,
where the angle of incidence is 70°. The blank area means the angular distribution
due to the knock-off process, i.e., x < 52. The mesh area means the contribution of
recoil atoms due to the ion which is reflected in region 58 < xp < 102, The hatched
area means that of recoil atoms produced by the ions which reflected in the deeper
layer than lOK. From this figure we know clearly that the angular distributions of
light-ion sputtering at oblique incidence are composed of two parts which is already

described above.

IV Conclusion

Using the Monte Carlo program ACAT, the incident energy dependence and the bombarding
angle dependence of low-energy sputtering have been investigated. Using the ACAT results
of low-energy sputtering yields, we derive the mass-ratio dependence of sputtering
thresholds with the help of the empirical Matsunami formula and compare the ACAT threshold
energy with the recent theoretical result. And it is found that the agreement between

two approaches is very good.

As for the oblique incidence of low-energy ions we found that the bombarding-angle
dependence of the low-energy heavy-ion sputtering is very strong and the finite number
of sputtered atoms can be observed near 0. = 60° even if the incident energy is less
than the threshold energy at normal incidence. It is found that this strong a-dependence
can be explained by the fact that the threshold energy of heavy-ion sputtering is a

decreasing function of o until 60°.

The angular distributions of sputtered atoms are also calculated using the ACAT
program, It is found that the angular distributions of low-energy sputtering have

much different profiles from those predicted by the linear~collision~cascade theoryl.

—17—
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Table 1 Various screening functions avaiable in the ACAT program

Screening function

Screening length

Thomas-Fermi 2/3.k.3/k _
o ol [+ (x/122/3)% (k = 0.8634)
Moliere 0.35¢"0+3% 4 0.55¢71+2% | .10e70-0% 0.4685
1/2 1/2,2/3
(Zl + Z2 )
Kr-C 0.190945¢~0-131825% ¢ 49467470-63717x
+ 0.335381e 1-919249%
Ziegler 0.18175¢"3+1998x 4 50986e70-94229%
-0.4029 -0.20162x 0.4685
+ 0.28022e70-4029% 4 028171e70- x ,0.23 , ,0.23
1 )
Lenz-Jensen ' e_3'1ly(1 + 3.1y + 3.24y2 + 1.46v°
(LJ) + 0.248y%)
ald ¥ e T(1 + 0.9839¢ + 0.4272¢2
+ 0.01150t3 + 0.01288t%)
aMLJ exp( - A.x + B,.x3/ % - ¢, %% 0.4685
12 12 12
2/3 . . 2/3.172
@23 + 2}
Ay, = 1.69416(0.4092) /G(2/3) 1%/ 2
B, =0.7629G(0.1687) /6(2/3)3/%
Cyp = 0.1206G(0.2789) 2/G(2/3)
_,m m
G(m) = Z1 + 22
ty=v x
st = /9.67x
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Table 3 The ACAT results of sputtering yields at noxmal incidence for

various ion-target combinations

Ion Target Enerqgy YI YII Ytot Yp No
(ev)

100 -_— —_— 0.00039 0.00034 80000
H Ni 200 0.00020 0.00608 0.00628 0.00442 50000
1000 0.00116 0.0151 0.0163 0.00708 25000
30 -— —_— 0.00064 0.00063 200000
He Ni 100 0.0033 0.0506 0.0539 0.0329 30000
1000 0.0520 0.121 0.173 0.0368' 10000
30 —_— _— 0.00076 0.00074 500G0
Ne Pt 100 0.0109 0.0859 0.0968 0.0666 10000
1000 0.533 0.401 0.933 0.180 10GC0
20 — e 0.00789 0.00750 50000
Axr Au 100 0.472 0.289 1000
1000 2.68 1,05 3.73 0.628 500

15 — — 0.00200 0.00198 150000

Ar Ag 100 —— 0.516 0.213 4000
1000 3.61 0.525 4.14 0.421 500

20 — _— 0.00067 0.00044 500000

Ar Cu 100 —_— 0.345 0.136 10000
1000 3.10 0.124 3.22 0.321 3000
30 _— 0.00042 0.00012 50000
Ni Ni 100 0.0866 0.00020 0.0868 0.0101 10000
1000 1.65 0.0572 1.71 0.122 1000
40 —— 0.00002 0.0 200000
Hg Ni 100 0.0304 0.00012 0.0305 0.00141 50000
1000 1.97 0.0114 1.98 0.0909 2000

70 0.00372 0.00076 50000

Hg Al 200 0.128 0.00076 0.129 0.0128 4000
1000 0.953 0.00210 0.955 0.0785 5C0

300 0.00083 0.00006 50000

Hg c 1000 0.112 0.00020 0.112 0.0104 5000
10000 0.960 0.0 0.960 0.130 100
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TABLE 5 Analytic formulae for threshold energy of each mechanism

MECHANISM Eih
U 1
1A g
4 o
Y sin’ ( 5= )
U 1
1B
Y sinﬁ( I T za ; Za )
U 1
1c - 8 1w +a
Y sin (————4 )
U 1
S
1D (o208 (mF)m ¥ 20
Y sin 2m + 8




TABLE 6 Analytic formulae for threshold energy of each mechanism

MECHANISM Eh
2 2
US (1+y) (1+2ucosel+u )
Y (1+ucos®l)4
2A
§+26=1r-a
U, () (142ncos0 +)
Y (l+pcos@1)6
28
8+38=m-a
ug (L) 2urt2 (1+2ucos@1+u2 y2m
Y (l-i-ucos@l)6
2¢
(xt1)8 + 30 =7 -
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Fig. 3 Typical two coordinates in the spherical
trigonometry, where X, Y, and Z are three axes of
the absolute coordinate, and A, B, and P are those
of the moving coordinate fixed to the projectile.

The angle 0 is the scattering angle in the L system.
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Art —Cu
E=10 KeV

AMORPHOUS
TARGET
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(A)

Fig. 5 Cascade developments in a copper target
for 10 keV Ar - Cu, where the thine lines are the
trajectories of recoil Cu atoms, and the broad

lines are those of the Ar ioms.



SPUTTERING MECHANISM
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Fig. 6 Schematic representation of sputtering mechanisms
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Fig. 7 The energy-dependences of sputtering yields at normal incidence for

light-ion sputtering and medium-ion sputtering
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RELATIVE THRESHOLD ENERGY
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Fig. 12 Comparison between the ACAT threshold energy and

experimental threshold energies which are determined from

Eq. (31) using the various experimental data,
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Fig. 13  possible mechanisms for heavy-ion threshold
gputtering
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Fig. 14 Possible mechanisms for light-ion threshold
sputtering
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Theoretical values are calculated from Eq. (36) and experimental ones are

those in Fig. 12.
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Fig. 16 Angular distributions of sputterd atoms for Hg+4Ni

at normal incidence
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Fig. 17 Angular distributions of sputtered atoms for Ar++Cu

at normal incidence.
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Fig. 18 Angular distributions of sputtered atoms for Aft-Cu

at normal incidence
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Fig. 19 The angular distributions of sputtered atoms for

H+—>Ni at normal incidence
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Fig. 29 Comparison of the ACAT angular distributions with the TRIM
results and measured distributions in the case of 450eV H -+ Ni.
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Fig. 30 Comparison of the ACAT rangular distributions with the
measured results for 1000eV H - Ni.
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