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Abstact
This review surwveys the theoretical approaches on the stop-
ping power of the charged particles penetrating through matters.
In view of our interest, the particular attention is paid to
the problems of the energy losses of projectile ions in hot and
dense plasmas in the study of inertial confinement fusion (ICF).

General physical and mathematical treatments are also outlined.



§1. Introduction

The problems of energy deposition profiles by ion beams and
their effect of target materials are of decisive importance in
practice'of the inertial confinement fusion (ICF). Especially
the stopping power of ICF target materials plays an important
'role in the achievement of nuclear fusion reactions. The
theoretical treatments of the stopping power and the straggling
phenomena in hot and dense plasmas, however,are quite difficult,
compared with those in the cold plasmas,and very fey.theoretical
bas s have been established yet. The projectile charge states
are also difficult to determine from the viewpoint of
experiments.,

In this article, our main interest lies in the stopping
power of the charged particles in a high density and high
temperature matter. In addition , we describe the theoretical
methods of stopping power calculations in the dilute plasma and
cold matter in order to extend the theories to hot and dense
plasmas.

Several experimental results will be also shown in this
article for the comparison with the theories of stopping power as
references.

In order to represent the methods of apprcaches which are
applicable to different plasma conditions, we display the
eonditions based on the ideas of Arista and Brandt
(27) in Fig.1l. The parameter Y2z e%hth measures the ratio
between potential and kinetic energies of the electrons in a4

degenerate electron gas. Nondegeneracy can be included in this



/8
parameter through the expression x—~n_~(—n> 3L

10w\ 4
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where v=e /r s20’ the mean kinetic energy k— SNV = 5EF+2kT ; §EF'
mean kinetic energy of a fully degenerate electron gas, %kT:

mean kinetic energy of a nondegenerate plasma;EF=1.84/r§ the
Fermi energy of the electrons in atomic units. In Fig.1l the
plasma conditiors are shown in metal(M), the sun, and artificial
plasmas of interest for nuclear fusion in the context of inertial
confinement plasma (ICP) and magnetic confinement of plasma(MCP).

The line denoted X2

=1 separates the conditions in strong
interacting plasmas from those in weakly interacting plasmas.
For the dscription of the energy ioss, the lines Ve=Vo and
ve=v0/3 indicate the transition region between the plasmas where
the classical theories are used ( the lower right-hand quadrant)
and all other plasmas where quantum-mechanical descriptions are
appropriate. Below the line 6 EkBT/EF=1, the plasmas are

degenerate or cold, meanwhile above the 1line they are

nondegenerate or hot.



§ 2. Basic Concept of Stopping Power Theories and The Key
[ 4

Theories of Charged Particles through the Media

Stobping power is the property cf target substances that
decelerate charged particles traversing them. Physical
'processes of deceleration of charged Qarticles are mainly due to
the excitation and ionization of electrons in the materials.
when projectiles are slow, the nuclear collision takes a part in
the deceleration processes. Stopping power processes have been
considered and formulated in two ways. (1) The one is based on
the concept of charged particle collision on atoms or molecules.
(2) The second is based on the concept of interaction of incident
charged particles with dielectric substances.

The stopping power .2 defined as the amount of energy loss
of incident charged particles per unit length along their track,
usually denoted by (-AE/dx).

Let us consider the case where a charged particle of a
charge Z1e with a velocity v is injected into target materials
with Z2 electrons ( in an atom or a molecule ) with density n
per unit volume and collides with them. If the velocity of the

particle exceeds the electron thermal velocity vth=(2kBT/m)1/2 in

the target plasma, ( v>>vth), the stopping power is given by (56)
2. 4
dx mv¥ ~
Conversely, for low velocities ('v<<vth )
GE _ 16 1'/2 72} e* nv z.m/2 (2.2)

InA(v,, ,2; )
ax 3 (2kgT,) /2 th
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Here the expressions for low or high temperature limit are given
by egs.(89) and (90) in Ref.(56).

The collision logarithm 1ln /A can be expressed in each case
by using either classical or gquantum-mechanical approximations.
In the impact parameter description the result becomes of the
form

lnA= ( b /b

max’ min Ve (2.3)

where bma and bmin are the values of the maximum and minimum

b'4
impact parameters, respectively.
These approximation values are represented in Table I following

(56) The classical and the

the Ferrariius and Arista analysis.
quantum-mechanical resulits are separated by using the Bloch para-

(71),. _ _ 2 . .
meter g —bCL/bQM-Z1e /hvr, bCL denotes the impact parameter

given by the classical approximation and b given by the

QM
quantum-mechanical approximation. The transitions between these
two expressions are described by the collision logarithm in
classical or the quantum-mechanical approximation.

Iﬂ Fig.2, using the Ferrariis and Arista analysis of 1n
for the energy loss of ions, we illustrate the method of descrip-
tion of the stopping power evaluated for Z1=1 in generally
applicable conditions. The classical approximation for the
energy loss is applicable to the cases of intermediate projectile
velocities, vth<v<Z1vo (CL2), as well as low velccities,
V<Vth<Z1V0 (CL1), at low temperatures. On the other hand, the
gquantum-mechanical approximation is applied to high velocities,

v>vth>Z1V0 (gM2), at all temperatures as well as low velocities,

v<Z1v0<vth at high plasma temperatures. Here v denotes the Bohr



P

velocity and Vin =(2kBTe/m)1/2 the electron thermal velocity.

The transitions between these corresponding cases are described

L4

as "transition region'. All these approximations are contained
in the collision logarithm in the stopping power formula. The
arrows in” Fig.2 represent the directions of increasing( +,+ )(or
decreasing(+ , «)) ion velocity or increasing (or decreasing)
plasma temeratures. For instance; by increasing the temperature,
with a fixed ion velocity v<<vth , we go from the classical low-
temperature case, CL1, to the guantum-mechanical high-temperature
limit, QM1. Thus we can evaluate the stopping power through 1nA
by means of application of the results of Table I and Fig.2.

The stopping power can also be considered as the energy loss
of an incident charged particle due to dielectric response when
it transverses with high velocities v.

The slowing down process in a partially ionized matter
generally is due to the contributions of bound and free electrons
in plasmas. We will take into account these contributions as
the bound and the fiee electron effect for the stopping
processes. Furthermore, in the energy deposition problems, the
collective beamn- target interactions and beam density effects also
should be taken into account.

On the other hand, the effective charge of projectile ions
plays an important role in the stopping power calculations.
Effective stopping power charge will be determined by a balance
of charge-changing processes in a stopping medium.

We give a summary of these treatments of the stopping power
over a wide range of energies, densities, and temperatures in

Table II. Literature sources cited correspond to the reference



numbers. The classification of the stopping power theories here
can be made in the following way: (A) the approach based on the
contribution of bound and free electrons in plasmas to stopping
process, (B) the energy loss of an incident charged particle due
to dielectric response in the polarized target medium, (C) the
method based on the kinematically described collective equations,
(D) the description of collective, vicinage and beam-density
effects on the treatment of the stopping power, (E) the analysis
of éxperiments and model calculations of the stopping power and
the effective charge comprised in the stopping power theory, and
(F) semiempirical formulas of the stopping power and others.These
approaches from A to F are related one another.

The following illustration represents our summary cf the
stopping power theories and the relations between the way of
theories. Thus, the key theories of the stoppihig power are

tabulated in Table II.
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§3., Contribution of Bound and Free.Electrons

in a Plasma to Ion Stopping Power

The energy loss of projectile ions in matter is
primarily due to the processes of ionization and excitation of
the bound electrons surrounding the nucleus. These processes
depend strongly on the electron density, temperature, and the
ionization state of the matter. For very low incident energies,
hig;h—z1 ions and high-—Z2 targets, it is necessary in the slowing
down of the ion to include the stopping due to the elastic
Coulomb collisions between the ion and the target nuclei. The

(),

nuclear Coulomb stopping power is given by the empirical form

0,2777

(LE ) = cel/? expl -45.2(c' ¢ ) 1, [Mev/(g/em®y] (3-1)

where R= px, €=E/A[MeV/anu],

ot A1 Ao (2373 + g¥y"1/2 ’
A (A1 + Az ] Z, Z,
Z Z2,. % -
=4.14 6 1 3hrdy 2y1/2 5283 2/8y-3/ b
c 4.14x10 ( AL T Az) = ) (277 +  23°)

A1 (Z1) and A2 (Zz) represent the atomic weights ( atomic
numbers) of projectile ion and stopping medium,respectively.

The theories of the electronic energy loss are usually based
on the Bethe equation to descfibe the stopping power due to bound
electrons for high energy ions. On the other hand, for very low
energy ions, the LSS model (Lindhard,Scharff and Schiott)(66) is
appropriate. The electronic portion of this theory, assuming the

Thomas-Fermi description of the electron clouds of the ion and

the stopping atom, is given by the form:



dE

ta% 'uss = Crss E 1 -
(3.2)
whereC . =K(E; /1.602x10"") /(R x107) [ReV A1 m]
EL=(1+A)ZTZZe2/(Aa) [erg]
a=o.4683ng/3+z§/3)'1/2x1o‘8 [cm]
RL=(1+A)2/4nAna2 [cm]

A=A2/A1, and

0.0793 z}% z12 (1 + aj3/2
K=

(233 + 23/%)°/'p)/e

1/3

1 >137x B

The validity of this model is restricted by 2
(g =v/c.).
The basic slowing down processes based on the Bethe theory

involve the excitation and ionization of the atomic¢ bound elec-

(63)

trons. The Bethe equation is usually written by

* 2
dE = 4 ™N(q )p e* 7, 2mc2R2y?2 C,; s
(-3X ) Bethe™ (1n - g2- §= -2q,03.3)

mc?p2a, {1> iz, 2

*
where NO is the Avogadro number, m the electron mass, g the

effective charge of ions, § the polarization-effect correction

C.

term, <I> the average ionization potential and E —1 denotes the
‘ i 2,
sum of the shell correction terms, and y =(1~ g?)Ll72

The ionization potential in ICF plasmas has been discussed (1)

(2)

using a scaling formula
l (3'4"6

, the local oscillator mddel of

Lindhard et a ’°7?(LOM model), the generalized oscillator

strength(GOS) for (Al ions)(S’G) and tﬁe augmented-LOM(A-LOM).
(1)

Figures 3 and‘4 show the results of the stopping power in Al
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and Au obtained by these models.
Then stopping power due to the bbund electrons in cold

materials is expressed as:

dE . dE dE dE (3.4)
(Fx )p = ™Mnll—gx )getner (axluss ! * (Gx'n -
where the minimum value in dE/dx is chosen.
*

An important quantity here is the effective charge g of

the incident ion beam passing through the stopping medium. Since
*

the direct measurement of g is impossible, it has been found

usually from the measured stopping powers on the basis of

eq.(3.3).

Mehlhorn(1) used the expression of q*given by Brown and
Moak:(ég)
q'=2, (1 - 1.034 expl-(v/v,)/ 2°-°%1 1, (3.5),

where the Bohr velocity v0=2.188x108 cm/sec.

(7,8)

Meyer-ter-Vehn and Metzler ucsed the semi-empirical for-

mula found by Nikolaev and Dmitriev:(68)

1/k -k

*
g =2,01+( 2,* vj/u ) ] (3.6)
0=3-6x10° cm/s ana

1/2

with the parameter o =0.45, k=0.6, and v

usl v2 4 (Vth)z 172

, where vth=(2kBT/m) is the thermal elec-
tron velocity and kBT the temperature of the target material,
Some other least-squares fits to the effective charge have been

published by Betz(73) (70).

and Ziegler The experimental effec-
tive charge of an ion in the stopping material is usually infer-
red by comparing the stopping power S of high-Z2 ions to that of

protons Sp at the same velocities by

11 '



s= 1 g (v)1%s (v). (3.7)

As an ion beam heats a target, such as the ablator of ICF
target, the target material begins to be ionized. This
ionization results in the production of plasma free electrons in
the t;rget. The slowing down process of projectiles in partial-
ly ionized matter (plasma) is due to both the bound electrons and
free electrons.

The plasma free electrons contribute to the stopping power
by the effects of the binary collision (r<rd) and plasma oscilla-

2)1/2 and n is the

(71)

tion excitation (r>rd), where rd=(kBTe/4 ne
free electreon Jdensity . Following Jackson's theory

Mehlhorn expressed the free electron stopping power in the form:

w 2(q*)ze2
dE , _ _p (3.8)
( 3% )f — G(ye) lnAf ,
c” B
where
G(E) = erf(vE ) - 2 V(E/T ) exp(-E),
v 2
— n2 2 2 p2 =) 2__4mne q,
ye—B/Be-(mce/2kBTe), Bé ' vy
c m
A = 0.7648 c
£ T '
bminw P
2
— eZ]_ el
bpin = max( 3 — s
A12u2 2A12 u

U means the average relative velocity between the ion and the
target electrons, ézthe average ionization state of the target

atoms, and

12
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A

127 "2 1 A -
A, + A,

(

Meyer-ter-Vehn and Metzler 7) discussed the minimum impact para-

meter bmin in 1nA usiné the following electronic stopping power

edquation:
dE _ _4m (q*)2 e' n P ax
ax o v?2 — ln(~7;—7~4 ' (3.9)
nmin
where n=(02Z2/A2mp ) is the electron density with the mass

density Dz , the charge number.Z2 and the mass number A2 of the
target atoms, mp the proton mass. The minimum and maximum

impact parameters are given by

*

2
b . = max { 94 & e }
min mv2 ! nv
. v/w for bound electrons
Phax®
v/wp for free electrons,

For the average ionization potential, Meyer-ter-Vehn and Metzler

used the expression

- 1/2 2
Mw=092, (1 +1.8/2,"7) expl2.7(q,/2,)°] eV.
The dominant stopping mechanisms are energy loss due to binary

collisions with electrons at distance r<r, and due to plasmon

d
excitations at distance r>ra. . However, the bound electrons at
distance r>rd also contribute to the energy loss just as the free
electrons do. They pﬁinted out that it would be incorrect, for
most heavy ion applications, to use the quantum value bminfn/(mv)

which leads to the Bethe stopping formula.The choice for bmax= v/iw

(for bound electrons) and bm = v/ wp(for free electrons) in-

ax

13



cludes binary collisions as well as plasmon excitations.

Furthermore, a similar expression as shown in eqg.(3.8) can

(1),

be written for plasﬁa ion component of the stopping power

*

2 2
(-%%—)i = (%zéé 22 2 (“ﬁ“ ) wzp G(yi)lnA i (3.10)
- P
where
A _E

Ai =bmax/bmin'
b =Debye radius =( T /4 ne2)1/2
max e’ =T '

min 2
Z1 72> e
and
A; A
Ayp. 1 A2

This plasma ion contribution to the stopping power becomes appre-
ciable only at high plasma temperatures. For example in the
energy deposition of 3.5-MeV y -particles in the compressed core

of an ICF pellet, the plasma ion stopping power can play an

(1)

significant role
Therefore, the total stopping power of projectiles in

plasmas can be written by

dE _, GE dE . dE

According to Meyer-ter-Vehn and Metzler, the total stopping

power takes the following form:

dE 1 g q .
— = 1 - =2 2 + 2 bt 4 ’
ax " ) St 5Bt ) Se (3.12)

where G(x)=[erf(x)-2x exp(-xz)//n ] stands for the temperature

——

14



dependence of the Coulomb cross section in the case that the
thermal electron velocity Vin becomes comparable or larger than
the ion velocity v. A similar formula is also given by Mehlhorn

et al.(G) in the case of proton stopping power equation as

follows:
dE 41 Ngpo e" -
= = - 0P [(Z2 qz)Lb + g, Lg 1, (3.13)
mc?8? A, :
where
. 2mc?p2y? C.
i 2

14

In —mmmmm ~
b (I(q222)>

Lf=G(ye)ln-ﬁ-—g;
where A2 is the atomic weight and d, is the ionization state of
the target atom.

The light-ion energy deposition and implications in the
ionized materials for ICF targets are given using the practical
scaling formula of the stopping power by Widner et al.(Z)

The individual components ( free- and bound-electron contri-
bution) of the total stopping power can be seen in Fig.5, where C
ion passes through a partially ionized plasma of Au at Te=200 ev
and 1% of the solid density. The deposition profiles of 10 GeV
Bi ions in different materials and at various temperatures

(7,8)

relevant to pellet fusion are shown in Figs.6-8. Figure 9

displays the deposition profile of 2 MeV protons in Au as a
function of the electron temperature(1’2). The range of 2 MeV
protons in gold at the temperature of 100 eV is only about one

half that in the cold target. At higher temperatures, as the

free electron component becomes more dominant; the Bragg peak

15



disappears. As an example of light- and heavy-ion fusions, the
depgndence of the range of 2 MeV protons and 10 GeV U ions on the
density and temperatﬁre of an Au-ablator is compared in Figs.10-
11. The range lengthening in Fig.10 and conversely, the range
shortening in Fig.11 are illustrated. This is because the ion
velocity B =0.065 for 2-MeV protons is typically less than the
electron thermal velocity, while 10-GeV U ions (B =0.30) are
relatively swift compared to the electrons in the ablator
plasmas. As shown in Fig.11, the decrease in the ion range with
decreasing the material density at a constant temperature ref-

lects the increase in the degree of material ionization.

§ 4. Stopping Theory due to Dielectric Function Formalism

A charged particle passing through an ionized medium will
induce the electric field by polarizing the medium. The induced
electric field will then act back on the particle, resisting its
motion, and cause it to lose energy. This field is related
to the dielectric function €(k, ®w ). Nardi et al.(9’12) '
Brueckner et al}13) and Mehlhorn(z) expressed the energy losses
divided into two groups: electrons bound to the plasma ions and
free electrons in plasma. These fundamentals of the idea are the

same expression described in the previous section: S=S. + S_.

b f
The differences in the stopping power between plasma targets and

cold matter targets follow from two factors(12)

:(1) The stopping
power due to the free electrons in the plasma is different from

the stopping power due to the bound electrons in cold matter.

o

16



(2) The contribution of the bound electrons in the plasma ions
to stopping is different from that of the bound electrons in
neutral atoms in cold matter.

Nardi et al.<9) calculated the energy loss of protons for

plasma free electrons in nondegenerate plasmas as follows:

dE__ 2e? 1 1
pdX o Jokdk fo n du Im[ e(Mm=lkuv)]’ (4.1)

where v is the proton velocity, k is the wave number, @ is the
frequency, and ¥ =cos 0 = k-‘v/kv.
The dielectric functione (k, w ) in the classical form including
the effect of collisions is represented by

elk,w )=T + 2x°[ 1 + x2(z ) 1u2h?, (4.2)
where r =x+iy, x=u)/kvth, y=\>/kvth,\)is the collision frequency,

v is the electron thermal velocity, and Z(V ) denotes the

th
plasma dispersion function.

An upper cutoff wave number kc has to be introduced in

eq.(4.1), if the classical form of € (k,w ) is used. Nardi et

1

al. and Mehlhorn used Bethe's cutoff at kg =e45 /mv where

th'

vy=0.5772 in order to avoid divergence at large wave numbers.

Furthermore, Nardi et al. used the simplified quantum form for

non-collisional plasmas(40%
Im( € )=-Im( € )
4 13/2 pe? mw + (1/2 2
= n k3 exp[_. \mw - ( / )-nk) ][ exp(hkw )_1]
Vth ™ Vin kBTe
(4.3)

where w= % B k/2m.
The gquantum corrections are only important for large wave

numbers, where |€] *1 and both the quantum -and classical forms

17



of the dielectric function are valid. In Fig.11, the wvalues of
dE/ pdx of protons obtained by this procedure (curve(c))_and by
the use of the non-collisional version (y=0) (curve(b)) of
eq.(4.2) for gold target (19.0 g/cm3) are practically equal,
which/supports the cutoff approximation.

For the contribution of the bound electrons to the energy
loss, Nardi et al.(9'12) used the Bethe collision theory which
describes the interaction of short range encounters. Then the
average ionization potential based on Bohr's model and the number
of the bound electrons based on the Thomas~Fermi model are calcu-
lated in the Bethe stopping formula.

Figure 12 shows that the range shortening is caused at higher
proton energies, while range the lengthening occurs at lower ener-
gies because of the higher thermal velocities of the plasma
electrons.

Plasma collisions become significané at the lower portion of
energies in the dense target ( p=19.0 g/cm3). For the collec-

tive excitation of plasma oscillations, the Pines-Bohm theory(74)

is used:
dE e?p? 2mv?
—_——— = - In (1 +—5).
Z
pdX 20V 3kBTe (4.4)

The values obtained from eq.(4.4) are also given in Fig.12.

Mehlhorn also has compared the results of the binary +
collective model in eg43.8) to see whether the computationally
simpler binary model gives responsible stopping powers fqr
protons in dense Au plasmas ( Te=1 keV and p =0.193 g/cm3)

target. Thus the polarization drag and the binary + collective

18



modes give similar results.
On the other hand, Brueckner et al. derived the energy loss

of a fast ion .
k 1

*
dE _ q e 2 o _ X A,
dx -~ 2[5 1/ dk [, dw §( w kxv);?_ It €(k,w)] (4.5)
2 _ 2 2
k = kx + ki.
from
w2 ' wz(-)
1t]
e (k) =1 - £ - -] P :
w(w + iv ) _(kvth)‘ I +irj ) g2
(4.6)

-

= (plasma free electrons)+ (bound electrons to the

plasma ions), ' (4.7)

The effect of collisional damping is included through the

¥

collision frequency'vc, while kv is the frequency associated

th
with the thermal motion of the plasma electrons, and‘%?genotes
the plasma frequenc&. The dielectric function of the bound
electrons, which is calculated using the j-th shell electrons of
an atom, experience a harmonic force of the frequency wj and a
phenomenological damping force Pj.
The frequency is written by
4mN_ e? £, :
w?pp (3) = am J : (4.8)

where Na is the number density of atoms and fj is the dipole

oscillator strength. Brueckner et al. made the continuum appro-
ximation calculation using the Thomas-Fermi model of an atom to
estimate the bound electron energies and densities. The oscilla-
tor strength with the local density p(r) can be expressed by

2 .
fj=4 m r~ p (r)dr, (4.9)

19



23 x( s? )3/
4 s : (4.10)

p(xr) =

In eq.(4.10), Z2 denotes the atomic number, X(Sz) the function

2/31;'12/2me2, and

i

in the Thomas-Fermi equation ; b (3™ /4)

rzszbz—1/3.

The plasma frequency can be written by (Z—Zav)x(the number of

ionized atoms of the medium); Za' is the average number of the

v
bound electrons in an ion, i.e.,

At ne’ 4N (2 -3 Ye?

P m m (4.11)

Using these results, we can obtain a complete description of thé
bound and continuum electrons, including collisional damping.

The cutoff wave number kc is necessary to prevent the loga-
rithmic divergence when k2=k§+k§ = in eq.(4.5). This diver-
gence is a result of the breakdown of the classical dielectric
function at small distances. Since k;1 is essentially the mini-
mum impadt parameter, Brueckner et al. used the kC value corres-

*
ponding to the Bohr formula if the Bloch parametergzqg e2/"1'Ivr >1

and . the kc value corresponding to Bethe's formula ifg <1,

They calculated the stopping power using the empirical

*
equations of the effective charge g obtained by Nikolaev and

Dmitriev(68), and Brown and Moak(eg) (73t

(13)

or Betz

The evaluation of dE/dx calculated from these procedures is

shown in Fig.13 in comparison with the Northcliffe and Schilling

£(75),

resul The stopping powers for Xe and U ions in Al( a

typical 1ow—Z2 material ), and Ag and Au ( a typical high-—Z2
material ) are given in Figs.14-17.

20



When the bound electrons are ionized, their contribution to
the stopping power increases, provided that the collisional dam-
ping is small. The damping is weaker in low-z2 materials; hence
the stopping power increases with the temperature. For high—Z2
materials, the collisional damping is more important and the
stopping power can be reduced ( relative to the cold material )
for the temperatures up to several electron volts.

Some aspects of the problems in the energy deposition and

bremsstrahlung emission by relativistic electron beams in an Au

ablation layer have been discussed in Ref.11 ,i.e.,

dE gg
"dX dX|blbound electrons (to the plasma ions)]
+ 9B
dX |f[free electrons]. (4.12)

The energy loss of the electron beam in collisions with the
free electrons in the plasma is given by, using the relativistic
M¢ller cross section,

1 1

dE_-2T ne?
de= mVZ [ In (

K_,_ 2K+l
RK+177 TR+1

i 72 ln2+1-1n2 ], (4.13)
wheret:min denotes the minimum energy transfer in units of the

incident electron energy,K is tgﬁ kinetic energy in units of the

electron rest mass energy, andlgiin= <A/rd A being the de Broglie
wavelength and s is the Debye length.

The contribution of the collective plasma oscillation is given by

‘74). Thus the energy loss as the sum

the Pines and Bohm theory
of the Pines-Bohm contribution and binary encounter with the
electrons is results identical with those obtained through the

more exact plasma dielectric theory. The contribution of the
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bound electrons in the ions is evaluated using the Bethe theory.

The number of electrons per unit frequency having a revolu-

tion frequency W of the bound electrons is given by(10'12),

max 5

(w) 1)

r — -
n( w )= (32m%w% m2/H3) [ r’ [ expl (FIno?c? - eV(r)-H) .13

kpTe

w

[}

(2/m )V[E, +ev(r)] Y2/, (4.14)
where Et means the total energy at point r( radius of cell), V(r)
the potential, H the chemical potential and rmax(w ) is the
radius where an electron with the energy of hw becomes free.

(10) are shown. The

In Fig.18, the energy deposition profiles
plasma effect on the charge state of fast ions traveling through
a plasma target under conditions relevant to icon-beam fusion has
been calculated by Nardi and Zinamon}11'12)

The charge state of the projectile is determined by the
competition between electron loss by collisions and capture from
the target plasmas. The electron loss process in plasma targets
is dlue to collisions with the ions and also with the free elec-
trons. The capture of free electrons in plasmas takes place in
the form of one of the following processes:(1) radiative recombi-
nation, (2) three-body recombination, or (3) dielectric recombi-
nation.

Collisions with target atoms or ions are given in the
binary-encounter approximation(BEA).(11’12) As shown in Figs.19-

21, Nardi and Zinamon calculated the relation of the charge state

versus the energy of the projectile as it is slowed down in the
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target.
Using the quantum-mechanical form of the dielectric

function,(GS) (14,15)

Skupsky obtained the energy loss of ions in a
high-density plasma of arbitrary degeneracy.

The logarithmic divergence in a classical plasma, which is
expressed by writing the Coulomb logarithm in the form

1n(b /b

max min), results in different kinds of the divergence. One

approach is to describe the energy loss by means of two-body
collisions using the Rutherford scattering , whereas the second
approach treats the plasma as a continuous medium described by a
dielectric function. It is necessary to introduce a cutoff
parameter in order to prevent the logarithm from divergence. In
, a standard way of combining the

determination of b_. and b
mi m

n ax

close and distant collisions has been briefly discussed by
Skupsky.

For a quantum-mechanical plasma (i.e., r in which the
inter-electron distance is 1less than the Bohr radius agr
ied, ((4/3) n)-1/3 <T¥/me2)), the particle-beam interaction can
be treated by the random-phase-approximation (RPA). As this
formula does not contain any divergent terms, this is valid at
any velocity.

Skupsky has extended the dielectric function to arbitrary
temperature and degeneracy in a high-density plasma. The energy
loss of a charged particle passing through plasma can be represent-

ed by the dielectric function € (k,» ) of the medium!14);

aE b e? k.W 1 415
- fak = Il Tmoe ! (4-19)

dx 2w’y

.
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The dielectric function in RPA is obtained from quantum-

mechanical considerations(65):
41 7% e? f (v) - £ (v - fk/m_)
e(k,w) =1 + Z-————E——‘ S av = = = ' (4.16)
s h k? w - kv + 'hk2/2ms+ is .

where the sum is made over all the charged species, and fs is the
single-particle distribution function for the unperturbed plasma.

This expression is reduced to the classical form in the limit

5> 0: 4 7222 kedf /Ov
ek,w) =1+ Y— S 7 av S (4.17)
s msk2 w - kv + i6

The quantum-mechanical expression , eq.(4.16), provides a good
description for the linear response of the plasma electrons for

k(65)

all wave number whenever the average interparticle distance

is less than the Bohr radius. For a DT plasma whoge density is

greater than 20 times so0lid density ( 1024 3 )(14)

atoms/cm , this
condition [((4/3)™ n)—1/3<a0] is satisfied.

Skupsky adopted the Fermi-Dirac distribution function and
chose the degeneracy parameter N to satisfy the normalization
condition. Skupsky obtained the real and imaginary parts of the
dielectric function by means of the expansion of € (k,W) in the
parameter ( h]</2m)/<ve>: <ve> is the average electron velocity.

The energy loss to electrons finally can be obtained in the form,

for small v ( v<<ve>):

GE _ _ oo i’ moap 8 /1
- = VE n Tgww‘( o) /m 3 [ 2F1p (M) e—n+1]1nARPA’ (4.18)

where M is the mass of an ion.

The function F1/2 is the Fermi integral:
Jx

— dx (4.19)
S 4

1‘11 /z(n )=f0
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and is related to the electron number density by

(2mTe)3/2F1/2(n ).

A factor lnI\RPA has been separated out to facilitate comparisons
with other slowing-down formulas. Skupsk& formulated 1nh RPA
for nondegenerate (n <1), weak ( n <<1) and strong degeneracy(n
>>1)plasmas, and for the combinations by an interpolation

formula. Figure 22 shows how 1nA R varies as a function of the

PA
temperature for different electron densities(14t
Brysk(39) obtained a formula that interpolates between the
limits of strong and weak degeneracies(14). However, he had to

introduce the Coulomb logarithm in a rather ad hoc manner.
Skupsky(15) further developed the high density effects on thermo-
nuclear ignition for ICF using his interpolation formula for 1n
ARPA [see eq.(14) in Ref.(14)].

Dar et al.(16) considered the slowing down of ions by a

24_10%% en3)

degenerate ultrahigh-density electron plasma (n=10
by means of RPA and, as a result, obtained the conditions for
laser-driven chain-reaction fusion. In the Born approximation,

the differential cross section for the ion scattering is given by

d%c  _ 272%e* M (L
di dk  E;hT K’ -k ! (4.20)

where the ion initial energy Ei=Mv2/2, the energy transfer
A=E&*Ef, hk is the momentum transfer, and the electron plasma

form factor is

s p(w)=s" at e T < (£) o_0)>. (4.21)
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Then the energy loss of the ion is given by

2

dE _ 1 d%o
a== —v-f AdA ﬂﬁE—HE dk, (4.22)

where V is the volume of the plasma.

The plasma considered here is very dense, i.e.,

3 -3
m
(4/3) Tr_n > a,”.

It is convenient to express the electron plasma form factor i}@)

in terms of the quantum-mechanical dielectric function ¢ (k, w):

§ (0)=22L mi—L ], (4.23)

Vk dk,0)

where vk=4 k) ez/kz. e (k,® ) is given in ec.(4.17) or the form

2v f - £
+
eMk,w) =1 -—=57 Ptk £ (4.24)
V p Elp + Kk %p + Aw

(or see (eq.(7) in Ref.(.7)),

where Ep: -hgpz/Zm is the electron energy and fp is the Fermi

distribution.

Dar et al. calculated the energy loss for deuterons, tritons
and O-particles using eqg.(4.23). The results are shown in
Fig.23. They have concluded from the slowing-down cross sections
displayed in Fig.23 that (1) electrons in plasmas dominate the

slowing-down process for densities much below 1027 crn"3

become negligible for densities much above 1028 cm—3 ,and (2)

, but

somewhere between these two values lies the critical density for
a fusion chain reaction.

On the other.hand, Peres and Ron(17) have treated the energy
loss due to the ion-ion scattering in a dense plasma. This

occurs when the velocities of the electrons are equal to those at
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the Fermi surface (for degenerate electrons ) or below the
thermal velocity of the electrons ( if they are nondegenerate).
Their approach is due to the Born approximation treated in
egs.(4.20)-(4.24). They evaluated the collective screening ef-
fects which make the ion Coulomb cross section finite.

Sayasov(18’19)

calculated the stopping power for nonideal
classical and degenerate quantum plasmas on the basis of local
field theories. He found that correlational effects leading to a
difference between the average field and local field may in-
fluence essentially the energy loss in such plasmas. The stop-
ping power increases for both classical and quantum plasmas as a

result of local fields effects. The energy loss of an ion using

the dielectric function is given by eq.(4.15):

iE__ Z1282 *V 1
dx 2m2V S dk k Im[ e( k;kv=w )] .

The longitudinal dielectric function including the influence of

the collisional effects can be expressed by(1’9)

d
ep (kw)=1+——1[1 +s2(g) ] (4.25)
' k
_ W - W +iv
s = KVop ¢ = ,
th
1/2 -— o 2" 1/2
where kj=2 wp/vth' Z(g)=n 277 E-—-drand v, =(2T_kg/m)

[e0]

being the thermal velocity of the plasma electron, V e the colli-
sion frequency. Here it will be assumed that the projectile

ions are swift enough,i.e.,,v>>(m/mi)1/3

Vint My the mass of the
plasma ion. This assumpt.on allows to neglect the interaction
between the projectile and the plasma ions.

(1)For a classical plasma: the longitudinal dielectric function

takes the form:
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Q

e, (k,w)=1 + . (4.26)
% 1 - 6KQ,
2 _
d w
Q== 11 + sz(s) 1, s=-j3 (4.27)

k th
and the function G(k) is defined by the structure factor S(q).

This approach does not take into account the collisional effects.
The appearance of the denominator 1—G(k)QO in eq.(4.26) takes
into account the local field effects. The structure factor S(qg)

is rewritten by the lobal field correction as

dg dk 4.28
Gk) = -f——=—5 [s(|a-kp -11. (4.28)
(2m) "ng
Thus' the stopping power can be derived from Im[€ ' (k, ®)] in
eq.(4.26) as
4T n e"%,? v g v (4.29)
de .. - G(—)[1 + 2—H(— )llnA .
dx th 9 Ven
1 T
9= 5 ~( plasma parameter ), rd=(- S )1/&( Debye-length ),
3-Trg D : 47 ne?

where the forms of the function H(g ) and the Coulomb logarithm
are given in egs.(20) and (21)in Refs.(18) and (19) by Sayasov.
If the collisional effects are allowed for introducing the

collisional integral in the Boltzmann equation, the dielectric

function is

2
kd } + zZ(cg)

e, = 1 <+ 5 (4.30)
k 1 + iyZ(z)

= v =
where (w + i o )/kvth, y=V e/kvth.
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Therefore we obtain

bey 2
dE=—8/'rrezl nv(lnl.ZTe_l__e—) aa1)
dx 3Te Vth T wp 2 wp ; .
where

v 2 g

e _ = = 1n[ 1+ (=212

wp T 9 9

The total stopping power is given by combination of eq.(4.29) and
eqg.(4.31).

(2) For a degenerate quantum plasma: the longitudinal dielectric
function of an interacting electron gas can be defined as

follows,

QO (4.32)

ez(k,w) =1 +

where Q0 is the Lindhard polarisability(67)

and G(k) is the local
field correction. Substifuting eg.(4.32) into eq.(4.15), we can

obtain the stopping power

dE _ 4 e"m? 27,2
1 Z3 dz -2
C(r) = [ 7 ) 3 =, g(z)=G(z)z 7,
1 - £.(2))2° + £.(2)]
S 0 [( X g(Z) 1 2z X 1 (4.34)
2 ns
2 =_l§_____ 2 _ e - ( 4 )1/3

2k’ X = TV, T 97

| z+1
z-1

where f1(z)=1/2[1+(1/2)(1/z )(1—22)1n

1 for zg1
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is the function described in the Lindhard theory (see Ref.65 or
Ref.67), C(rs)= the Lindhard's expression(13) in Ref.67 + the
local field coéorrection G(z).

The real field including some local field contribution
through the interaction of electrons differs from the average
field considered in the Lindhard theory. 1In Fig.24,the coeffi-
cients.C(rs)=—dE/dx/4(e4m2V/3ﬂ'ﬁ3) against rs=[3/(4ﬂ nag)]1/3 are
shown along with available experimental values.

Ichimaru et al.(zo) have treated the theory of interparticle

correlations in dense and high-temperature plasmas. The stop-

ping power of a dense two-component plasma has been calculated

from the dielectric formulation of eqg.(4.15). The static and:

d&namic local field correlations describing strong Coulomb-
coupling effects beyond the RPA are explicitly taken into
account.

Cover et al.(21)

examined the effect of the collective
excitations to the stopping power of a £ast ion in a degenerate
electron-ion plasma. Let us assume the ions form a classical
plasma at a temperature Ti' Using the energy loss formula,
eq.(4.15), described by the longitudinal dielectric function for
the low-frequency ion, Cover et al. obtained (dE/dx)co ( contri-
bution from collective modes) and (dE/dx)ip ( individual-particle
contribution ). In Fig.25, their calculational results of the
ratio (dE/dx)co/(dE/dx)ip vs the density for a 3.5 MeV o-particle
incident on a deuterium plasma with an ion temperature of 50 keV
are given. The collective contribution to the ion stopping power
at densities anticipated in the laser-fusion domain is not

significant.
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Déutsch et al}22_26) have paid a special attention to the
stopping power and straggling of nonrelativistic ions as ICF
driver in dense and hot matters. Their approach is based on the
RPA with an exact dynamic dielectric function valid at any

temperature. The density of the free-electron fluid is given as

_ -1/3_-1
r=0[ (4/3)7m n ] ag < 1.

They have taken advantage of an exact RPA-¢ (k,w )(24) at any

v,’vF ratios, though the works of Arista and Brandt(27)

(14)

, and
Skupsky were mostly devoted to small V/vF values. The partial
degeneracy effect may be worked out through a simplified(g) low-
frequency form of the RPA- ¢ (k, w ).

The stopping power using the Lindhard formula reads

4 'nleel'
gi = — nL, (4.35)
v/v 3,2
=—§;f Fudus® Z Xz £r(u,2) — (4.36)
X" 0 Y 22 +X% £, (u,2)1? + [x2f,(u,z)]?

in terms of the standard dimensionless units

k w 2 o r
Z = , u= , X%= s =0.5211.
2 kF ka T
Maynard and Deutsch(23) generalized egs.(4.35)-(4.36) to any

temperature or degeneracy. The generalization is carried out in
eqs.(3),(4),(7) and (8) in Ref.(23), and others.(?1s24-26)
The effect of the temperature is especially noticeable at

low velocities, which allow us to visualize the discrepancies of
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the complete calculations by Deutsch et al.with respect to the

T=0 calculations.(67)

The corresponding dE/dx is displayed in
Fig.26. The stopping power exhibits the important temperature
effects around Teou 1 for ions of a few MeV per nucleon, an
energy range typical of heavy ions used in ICF,

In Figs.27-28 a few significant examples are displayed, for

the range

j}{ (EMlO de 3
= = 4,37
R o 9% =J 5, 3E, ( )
dx
and for the deposition time
tl ) EO dE
tdeposit=‘j dt = t[ (JQE )v (4.38)
to EO/10 ax

where EO denotes the projectile incident energy at the pellet.
Arista and Brandt(27) and Deutsch et al(?z) have treated the
energy loss problem using the following ways: the scattering rate

4 w7,%e? 27

Rk ,w )= ("__""'k_z'——)zﬁ'z" S(k,w ) (4.39)

and the dynamic structure factor

~hk? 1
Stk »w )= 7557 N(w) Tm [m“] (4.40)

-1

where N(p )=[exp( oHtw )-1] and 8 =1/kBTe.

Therefore, the energy loss rate is given by

dE _ _ '
—Et-_ f‘(-gﬁﬂ_——ﬁ)—r yel mR(Ik,w)

Ze .2 3 w N(w) 1
= (——)2f da°k —2* Tl 1
) K2 e (k,0)  ? (4.47)

32



where 1 w (p, k)=E(p')-E(p)=hk.v + hqz/(ZM) in terms of the
incident velocity y=p/M. For heavy projectiles M>>m , the recoil
effects are small and we can expand eq.(4.41) in terms of

bw 7k /2M to obtain

de _ (_dE GE ——
at - agdo * g )yt (4.42)
where
dE Ze |2 3, wN(w ) 1
(=7 ) ==(— )" J&k—s— Inl—7F— 1 . (4.43)
Finally the stopping power S is
_GE ., _1[(dE
S 22 m — O e —
dX vidt /g
2(2.@2("”d!e <0 S S
- — == —— 4,44
5 S jodwmlmlecue,w)] , (4.44)
For nondegenerate plasmas, kBTe >>H , they made an approxima-
g
tion to S and Q% :
(4.45)

Ofvin,To) &~ 2RRE(V, n. 13 ) .

Brandt(zs) reviewed a series of problems in low-velocity
stopping power physics in 1981. He concentrated on three topics
of them:(1) the material dependence of low-velocity stopping
powers, (2) the effective éharge q* of atomic projectiles as
defined by the stopping power of matter, (3) the change of stop-
ping powers in the transition from degenerate to nondegenerate

plasmas. This change will occur in controlled fusion devices.

(29) 4

Measurements of energy losses AEHe/ AED of fD and 1He

ions in solids, covering their entire range of rs values, reveal
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the pronounced target effects that diminish With increasing the
ion velocity ( see Fig.1 in Ref.(29) or Fig.3 in Ref.(28)).
Schulz ana Brandt(30), and Brandt(31) derived the effective
charge fraction,
: 1
;= _‘51: y_.i_(é_)é—
zZ, Z E& (4.46)
in a dielectric response approximation and tested the predictions
on new low-velocity precision experiments and high-velocity

channeling experiments. Brandt obtained & in the form:

S0 gV + C(‘l};)[l -‘31@/1’)] 1’[1[1 4.(4/%:'%)2)] (4.47)

4

where 3 ‘ 1 4
IVF (1 + %Va/'\/; - Tg\/‘r/\/F ) for VvL
ViV )= (4.48)

\/ C" + _45_ FZ/'\/Z) for VF;V p
1~ deve o2
Vo) = 7
_/\( .T) ZZ./Q{,I _ %[11_({(\/?)]} (4.49)

C(rs)g 0.5 for most metals and
q(vr)= Q(vr)/Z1 ; q=Q/Z1, if the ion carries N electrons, the

ionic charge Q=%,-N.

1

The effective charge of slow ions in solids with a mean
relative velocity between the ion and electron was represented by
Kreussler et al.(zg) On the other hand, a general expression for

the effective charge of slow ions in dilute plasmas at the tempe-

rature T was obtained by Arista and Brandt}33) For swift ions
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(32) also calculated the

in condensed matters, Brandt and Kitagawa
effective charge based on a dielectric-response approximation.

According to the theory of Arista and Brandt, the effective

charge of slow ions in dilute plasma, for all ions with Z1 25,
can be obtained from
* -
q = 2,0 1-eP% ) (4.50)

wi€th x=(3kBTe/m)1/2Z v v, the Bohr velocity and b=3.5 for

1707 0

VAV

Moreover, they discussed the charge dependence of the energy loss
of slow ions with velocities VeV and the charge Ze ( ZéZ1, Z1
is the atomic number) in a plasma, using a quantum-mechanical

treatment. The ion velocity v is replaced by a mean relative

velocity between the ion and the electrons. The relative veloci-

ty is given by the thermal electron velocity vth=(3kBTe)1/2,
since v<vth.
The energy loss is given 'n the form:

dE 164 2 4 3/2

Lo n7 e'v ( m ,

ax 3 m 2k, T o L(H,Té, Z) (4.51a)

for the collision logarithm

_ Ra T2 3/2 4 4 ‘
Lo 2) =1ﬂ[ Ztgﬁgj;wPJ—QT—é—~ —g-eyE1Cy) . (4.51b)

Here E1(y) is the exponential integral of argument

y= ( Tz ny, )7 = [Pefmvl/ 2k T

Y= 0.577, [*=e) =1.78, and 0.)p=(4'ﬂ'ne2/m)

ve=(2/3)1/2vth’

1/2.

2

In the limit of high temperatures ( kBTe >>Z me4/ ﬁ4), L becomes

independent of the ion charge, i.e.,
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kpTe 1
LQMPT(n,Te)=ln.( o f g (4.52)

where quantum-mechanical perturbation theory (QMPT) is applied

under the condition § sq*ez/ Hv <<1. This result follows from

th
eq.(4.51) for y — 0, the exponential integral E1(y)=—T - lny
and the approximation (3/2)1n2-(1/2) T -(1/2)=1/4.

This is also in an exact agreement with the result obtained from

the E(k, W) formalism for a nondegenerate quantum plasma { see

*
eg.(23) in Ref.(27)). In the classical limit & =g e2/ ‘hv

2
1

th
>>1,( i.e. KgT_<<2 me?/ 12), we then obtain

3/
- A(kgTe)
. LCL(n,T,Z)-ln Z = e op

] —oy - L (4.53)
2 .

Arista and Brandt discussed the transition between the

classical and guantum-mechanical approximation and explained

physically its condition. The transition will take place when

, 2 4
LCL(n,Te,Z)=L (n,Te) at the temperature Tc=2.82Z me /

QMPT
’hsz=sz106 K. They have obtained the effective charge in the
form

*
q =2z, £(t) (4.54)

f£(t) =1 - exp(-at1/2),

where a= JSb 2 6 and t is a reduce¢ variable defined as

2 with k.T.=me?/ 7% = 1 aw., (T

- 2 - -
t—kBTe/Z1va 5To =27.2 eV/kB_3.16x1O

0

* |
K). Setting Z=qg =Z1f(t), they found a useful scaling of

eg.(4.51) in terms of t:

L(n,T,Z) LQMPT

L(t)=1n[at'/2
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/E(t)] - 2T - 3/4 - (1/2)(317.,_,11(},D (4.56)




with y= T 2f2(t)/2t. For fully stripped ions, then Z=% by
setting f£(t)=1.

Values of collision logarithm IJn,Te,Z) as calculated by
egs.(4.55) and (4.56), are shown in Fig.29.

The application of Lindhard's dielectric theory to real
solids becomes a formidable task since the direct numerical
integration of the Lindhard stopping formula is slow and
cumbersome due to the presence of singularities in the integrand.
Numerical evaluation of Lindhard's theory of stopping power for a
charged particle in a free-electron gas was fist made by Iafrate
and Ziegler(34h

For an ion of charge z.e ( bare nuclear point charge ) moving
with velocity v in a medium of uniform density n, the energy loss

due to electron excitation can be written in the form(65'67)

dE _ 4 ¢ Z, e?
"G - o ¢ —%— )*nL( n,v), (4.57)
where L is called the stopping number. In the dielectric

formalism, L is written as

; kv
_ i dk 1
L = “Tel i) x foky wdw [——— - 1 7, (4.58)

e(k,w
where w g =4 q ne2/m. ')

Lindhard obtained the dielectric function for a free-electron gas
within the first-order perturbation theory.

The Lindhard stopping number can be written in the form

6 v/Vg o z?® f,(u,z) dz

/ du J
T UL TET R R, 17 X E, (w20 TE

L, =

(4.59)
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where the parameter XZ =v0/m Ve the reduced variables z=k/2kF
and u= u)/ka, and for f1(u,z) and fz(u,z) and the method
of derivation of equations, see egs.(1)-(11) in Ref.34, or
Ref.35, or also eqgs.(4.1)-(4.12) in Ref.[65).

In Fig.30, the calculational results in stopping number
with the electron density and energy are shown.

l.(35)

Moreover, Iafrate et a evaluated the Lindhard

dielectric theory of stopping power within the local density

approximation of Lindhard and Scharff(64)

and the concept of the
effective charge.

In the local density approximation, each volume element of
the =0lid is considered to be an independent plasma of uniform

density, so that the total electronic stopping power is given by

dx m v

2, o

where n(r) is the spherical averaged charge density of the target
atom. They used the spherically averaged solid-state charge
densities in evaluating eq.(4.60). Inspection of Figs.31-32
shows that the stopping number integrand of eq.(4.60) approxima-
tely follows the radial charge density in spatial variation. It
should be noted that the low-energy (100 keV/amu) projectile
stopping number is influenced mainly by the outer shell electron
charge distribution, whereas the high-energy projectile (10000
keV/amu) stopping number is dependent on the inner electron
shells as well (see Fig.2 in Ref.(24)).

When the projectile is an ionized atom with an intrinsic

electronic charge distribution, the question of the net charge of
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the projectile arises.

Ziegler(37) made the effective charge q* in the form
*
q .
—- =1 - [ exp(-A) 1[1.034 - 0.1777 exp(-0.08114 zl)],(4-61>
1
where

A = B+0.0378 Sin‘%- m™B

B =0.886(40E/M)" /2 22/3

1 14
where the ion energy E is in MeV, and the ion mass M is in amu.
(36)

(4.62)
Ziegler calculated the stopping power of energetic ions
in matter (energies above 200 keV/amu) using the method in the
preceding discussions. He also presented new calculations for
mean ionization potentials, <I>, and correction parameter, A , for
the traditional <I> in comparison with experiments. The mean
ionization potential is expressed in the local density approxima-
tinon in the form:

1 v .
In<I> = — IO n, In(h 1 wp) av (4.63)

’
2

where 22 is the total electron charge, and ) is some constant of
the order of unity, i.e., X =1 ~ V2, and n, the charge density.
Table 1 in Ref.(36) shows calculations of the mean ionization
potential, <I>)for solid density and gases Z=1-92, using
ed.(4.63) and average valués of A .

(38) evaluated the energy loss straggling of a

Sigmund and Fu
point charge penetrating a free-electron gas based on the
Lindhard dielectric function. With regard to straggling,

Bonderup's formula has been partially confirmed, but it was found
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that this correction is important in numerical applica-
tions. The correction is substantial for ion velocity v which
[ 4 .

approaches VF,in particular at high electron densities, i.e., for

x2,=e2/(ﬂ Tovg) << 1.

§ 5. Theory of Stopping Power based on

Kinematic Description

In order to calculate the energy loss of a projectile as it
passes through a plasma, it is necessary to specify the
distributions of various plasma species, i.e., how many particles
at point r and time t have velocity v. The tine evolution of the
distribution function is described by a kinetic equation whose
collision term is appropriate for the plasma conditions under
consideration.

Expressions were derived by Brysk(39) for the stopping power
of a fast ion in a plasma from the kinematic description of an
elastic collision between two bodies. The kinematic basis use
the Rutherford cross section. The energy loss was calculated in
full degeneracy (Te+ 0 ) using the Fermi distribuﬁion and in
the opposite limit using the Maxwell distribution.

For ICF-plasma, the application of the Lenard-Balescu

equation(76'77)

or a quantum-mechanical version was proposed by
Gould and Dewitt(78). The quantum Lenard-Balescu equation can be
interpreted as a Boltzmann equation describing collision between

two quésiparticles which interact via the dynamically shielded
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Coulomb potential. It treats both close and distant collisions
correctly, and requires no ad hoc cutoffs.
By the use of the Lenard-Balescu kinematic equation,

Lampe(40)

treated the number and mean energy loss of electrons
scattered through small angles for a tenuous monoenergetic elec-
tron beam incident on a quiescent plasma.

Sigmar and Joyce(42) developed a formalism forna tenuous
energetic test-particle ( species ) with a multispecies of high
temperature plasma. Their calculations contain suitable quantum
corrections for large angle scattering, i.e., for close colli-
sions. The theory was applied to the slowing down of fusion-
born a-particles in a mirror-confined plasma (Ti=100 keV, Te=50
keV, n=1014 cm—3). Then the theory and numerical results were
compared to the o -particle slowing down in Tokamak electron-

14

deuteron plasma (Ti=4 keVv, Te=6 keV, n=10 cm-3) and the injec-

ted proton slowing down in Tokamak electron-proton plasma (Ti=0.5
kev, T_=1 keV,and n==5x1013 cm™3).

On the other hand, Payne and Perez(41) derived an expression
for the energy loss of a beam of particles passing through an
inhomogeneous plasma which includes the effects of departures
from local equilibrium due to gradients in the plasma.

A combination of the test-particie approximation with the
Lenard-Balescu collision term and the Bhatnagar-Gross-Krook(BGK)

(79) for the plasma kinetic equation is used.

approximation
Calculations for an d-particle beam with energies from 0.5 to
4.5 MeV in a fully ionized hydrogen plasma were presented.

The effects due to temperature gradients produce a sizeable
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change in plasma stopping power. The largest changes are found
at high temperatures ( } 1 keV) and at low o-particle energies
( < 1 MéV) ( see Fig.4‘in Ref.(41)). These nonequilibrium
conditions can be directly observed if the energy loss of a probe

beam is measured at various angles with respect to the plasma

gradients.

§ 6. Collective, Vicinage and Beam-Density Effects

in Stopping Power by Ion Clusters

Efficient coupling of beam energy to a target medium is of
crucial importance to the viability of ICF. The energy deposi-
tion enhancements are attributed to several phenomena: (a)
the increase of effective path length in the target by applied or

self-generated fields, (b) collective beam-target interac-

(80,81)

tions, (c) modification of the single-particle deposition

rate because of the finite target temperature,(1'3'1o)

(82)

and (4)
beam-density effect.

The origin of the beam-density effect is the two particle
vicinage, or proximity, contribution to energy loss.

Rule and Crawford(45) presented an analytic expression for
nonrelativistic vicinage function and showed that it would have a
dipolelike behavior for large separations between beam particles
(Zi, Zj). A pair of particles separated by Rij have total energy
loss per unit path length Wij which can be written as the sum of

2

the usual single-particle terms WS=Z S plus the vicinage term

W(Rij):
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.2 2
W,. = 2.8+ 2. R.. .
ij i®p jSp + W 13) - (6.7)
where Zi' and Zj are the nuclear charge and Sp is the stopping
power of a proton.
Let us consider the i-th particle in a beam consisting N

particles, then the total energy loss by these particles is

W = WS + WB' . (6.2)
where
N
Wy = — Y W(R,. ji 6.3)
is the contribution from cooperative energy loss, or the beam-
density term(sz), i.e., WB is the proximity, orivicinage term for
(43)

loss by a pair of relativistic particles.

Figure 33 shows the ratio of the beam- density contribution
WB to single-particle energy loss WS versus the distance of a
beam particle from the beam front on the beam axis. The curves
were calculated for a 5-MeV proton beam of 10 kA with a Gaussian
radial profile.

The total energy loss is also written by the resonant term
plus the nonresonant term:

W =W, + W

R N’
( see egs.(12) and (13) in Ref.(45)).

(6.4)

Rule and Cha(43) derived the collective 2ffects in energy
loss by relativistic clusters of charged particles using a clas-
sical description . Extension of Fermi's method in it for deri-

ving fhe density effects is used(43'45).

Basbas and Ritchie(44)

analyzed theoretically the vicinage
effects for ion diclusters penetrating an electron gas and in

collision with single atoms. They discussed similarities between
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the vicinage function for energy loss of a swift cluster in an
electron gas and that for the same cluster colliding with a

. )
system of noninteracting atoms at condensed-matter density.

§ 7. Experiments and Model Calculations of Stopping Power

and Effective Charge

Knowing the effective charge of the projectile ion is very
important for the stopping power calculations in heavy-ion driven
ICF target.

The stopping power of a medium for a point-like projectile

of the charge Z1e may be expressed as

2 4
aB _ 4 727 e
—~— = nZz —_— L(2%Z,,%2.,,v).
dx 2 mv 172 : (7.1)

For partially stripped, high-energy heavy ions, Z1 in the dE/dx
formula should be replaced by an effective charge q*.

Both the density effect and plasma temperature effect in
its charge arise through changes in charge-changing cross
sections.

Cowern(47) determined the effective stopping power charge q*
for partially stripped ions by a balance of the electron capture
and loss cross sections within the stopping medium. The density
effect on charge-changing process is discussed by the genuine
gas-solid density effects. The limiting cases of a low-density
target (n -+ 0)''gas target'' and high density target( n-»> « )

""'solid target'' are assumed in the evaluation of charge-changing

cross section.
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In measurements on stopping power for 0.5-10 MeV/amu heavy
ions in solids and gases, Geissel et al.(48) demonstrated some

characteristics of the effective charge , which is defined by

_ (X2
SHI,V,Z2~ (q ) Sp,v,Z2 ’ (7.2)

where SHI,V;ZZand Sp,v,Zzare the stopping powers of heavy ions
and protons at the same velocity v in the same medium Zz.

The effective charge characterizes the average equilibrium
charge of an ion during its slowing down process, implying that
q* should be equal to fhe root-mean-square of the average equi-
librium charge distribution

ERRND RIS 112, (7.3)
where ¢i is the fraction of the ions in charge state q;-

The basic assumption in this statement is that the partially
stripped heavy ion interacts with the target electrons as a point
charge. This assumption has been supported by data in gases, but
for solid targets @ has been found to be larger than q*.

Figures 34 and 35 show that the stopping powers and the
effective charge extracted from measured stopping powers of heavy
ions depend clearly on the stopping medium. Figure 36 shows a
comparison of the experimental values of q* and-a for 1.4 MeV/amu
Kr, Xe, Pb, and U ions 'in Ar, It is demonstrated that the
agreement for relatively light ions, Kr, is good, whereas for the
heavier projectiles, a is larager than q*. For U and Pb ions ,the
difference is about 15%. Stopping power of (0.5-1.3) MeV/amu Pb,
Xe, and Kr ions in solids and gases are shown in Fig.3 in

Ref.48(1982).
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Stopping power calculatiions for heavy ions of (1-100) GeV
energy and results of 1D and 2D simulations of the stretched

L4

target cylinders heated by intense heavy ion beams have been

presented by Arnold and Meyer—ter—Vehn(49t

Such experiments in
the hot dense matters are planmned at GSI.

Anthony and Lanford(so) measured the stopping powers of
" several heavy ions (C, Si, Cl, Ti, Fe, Ni, Ge, Br, Nb, and I) in
elemental targets (C, Al, Cu, Ag, and Au) at energies near the
maximum in the stopping power versus energy curve (see Figs.3-7
in Ref.(50)). From these measurements, the effective charges of
ions are examined. Both of the magnitude and the target depende-
nce of the effective-charge expression:

—gz =1 - A exp[—jézgy‘ ]' y = -%- | ' (7.4)
are consistent with average equilibrium charge state measurements
made in gases ( see the effective charge parameter A and ) of
Table II in Ref.(50)).

Bailey et al.(51’52)

presented the time dependent charge
state of a heavy projectile traversing a finite temperature
plasma target by means of the average-atom model to integrate the
rate equation.

The charge state of the projectile is determined by the
competition between electron loss by collisions and capture from
the bound electrons in the target atom(11’51) listed as follows:
Electron Rates: bound-bound excitation and de-excitation

bound-free ionization

radiative recombination

3-body recombination
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Ion Rates: bound-bound excitation and de-excitation
bound-free ionization.

The result of solving the rate equations for various
projectile ions with an energy of 46 MeV/amu (corresponding to 9
GeV for an Au-ion) is shown in Fig.37(a) for electron-ion
excitation And in Fig.37(b) for ion-ion excitation for a target
ion with a q* of 10. For such fast ions, the equilibrium charge
state is very close to the fully stripped ion in all cases,
although the time to reach equilibrium increases with projectile
Z1. The equilibrium time decreases for the ion-ion case
(Fig.(37b)). The equilibrium charge is almost identical to the
electron-ion case.

Brice(53)

made a formalism of the electronic stopping cross
section over low-high energy ranges using three adjustablie
parameters, i.e.,one from the modification of the Firsov

formalism and two from the extension to higher velocities.

s (w)= ( 2, + Z2)S;(u)f(u)
ah? (30 e3 + 80e? + 74e +21 )
Sé('u) = T Ve 3(1 +e )3 /-l-(lOE +1)

. tan"1ve ] (7.5)

€ = (u/zvoz)2 (7.6)

fw) = [ 1 + (au/vy)™ 177, (7.7)

where the parameter is given by a=vOT/g. Since vOT and % are of
the order of the length of the atomic dimensions it is expected
that a ~ 1. The parameters a and n appearing in f(u) and the

parameter Z (nuclear effective charge) in Sgu) are considered as

adjustable parameters to be determined by experiment (see Tables
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I and II in Ref.(53)).

1.(54)

Recéntly Grygoriev et a proposed a model which

accounts for three proton mechanisms, i.e., energy losses due to
strongly bound electrons, excitation of collective free electron
oscillations, and individual collisions with weakly bound elec
trons.

The total stopping cross section S consists of two

tot
independent subsystems: inner-shell electrons (core electrons) Sc

and free electrons forming a dense plasma Sf.

stot = Sc + Sf'

It is assumed that the wvalue of Sc is the sum of electronic

(7.8)

stopping powers for different subshells,

S = 2 w S_,,
C n,1 nl nl

where w al is the number of electrons with the quantum numbers

(7.9)

n,l in an atom:

00

E
= 2 max _do _
80,17 4m fo Vn,lwnl(vnl) | av_, Jy 3(4g) AEA(AE) , (7.10)

nl

where Vo is the electron velocity, q’nl‘vnl) the electron wave

function in momentum representation, d o /d( A E) the cross
section for transfer of energy E from a proton moving with velo-
city v to an electron with velocity Vale

The stopping cross section for anelectron plasma is given by

[ S + S (7.11)

f = “eh pl’

where the energy loss Seh is due to the electron-hole generation

(—dE/dx)eh and S due to plasmon excitation (-dE/dx)pl.

pl
In studying different processes accompanying the ion penet-
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ration in matter, Burenkov et al.(55 proposed a model based on
the first principle calculation of the inelastic energy loss of
heavy ions in different targets for any nonrelativistic projec-
tile energy. Two stopping mechanisms were taken into account:
(1) Energy 1loss to excitation or ionization of the target
electrons by the partially screened field of the moving ion
nucleus is calculated in BEA. (2) Energy to electron exchange is
calculated on the basis of the modified Firsov theory taking into
account the electron-electron scattering. Figure 38 shows the
calculated stopping cross sections and the contribution of
electrons in the medium. Figure 39 presents the calculated
results for the stopping cross sections, together with
experimental data.

(56) calculated the energy loss of

Ferrariis and Arista
charged particles in nondegenerate plasmas using the classical
and gquantum-mechanical approximations. - They considered the
classical binary collisions between the test particle and the
particle in the plasma, and obtained the energy transferred as a
function of the relative velocity. Furthermore, they used the
quantum-mechanical analysis of the scattering of partial waves to
find the transport cross section for a screened potential, and
introduced analytical approximations to calculate the phase
shifts. Their study yielded a simple expression for the energy
loss in terms of the velocity and charge of the particle and of
the density and temperature of the plasma.

/2

For ions with high velocities, v>>vth(=[2kBTe/m]1 =elec-

tron thermal velocity), the plasma stopping power is given by
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dE _ 4m n Z%e4

- = In A(v,Z.) (7.12)
dx mv2 1

F

and for low velocities, VLV

2 4
dE _ 16/m nZie” vVm v
B
Simple expre§%ions for the velocity-dependent collision

logarithm 1nA can be given in each case using either the clas-
sical or quantum-mechanical (plane wave) approximation. In
particular, in the impact-parameter description the result is

given in Table I in the form 1lnA =ln(bmax/b ).

min
Treatments of the maximum and minimum impact parameters have
been discussed in detail (see egs.(3)-(6) in Ref.(56)).

Tahir and Long(57)

considered various aspects of heavy ion-
beam ICF. They used an energy deposition code GORGON which has
been written based on the macroscopic interactions responsible
for the slowing down of ions in materials. Some details of this

code have been describedj9'1o'57)

The formulae depend on the
shape factor and range , but do not in turn depend on
temperature and density, as it would ‘do in more detailed
calculations.

Wright et alxss) developed a model to study two loss
mechanisms during the propagation of high-power beams of C-ions
in the current-carrying air-plasma channels. Such channels can
provide the necessary standoff between the diode and the target
in light-ion-driver ICF. They considered that particle energy
losses are due to the radial.charge-exchange diffusion across the

channel magnetic field and the collisions with target particles.

Semiempirical charge exchange cross sections were derived
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from literature sources and used in a 3-D Monte Carlo transport
code with the energy loss modeled in the continuous slowing down
approximation. They concluded that the charge exchange losses
w6uld probably not be of major concern for light-ion-beam ICF
reactor configurations using channel transport, whereas the
collisional energy loss could be detrimental to the ICF reactor
if the plasma channel density is too large. |

(59) solved the bounce averaged Fokker-

Santarius and Callen
Planck equation for o -particles slowing down in a background
plasma of electrons and ions in the central cell of a tandem
mirrors.

The density-effect correction for the ionization energy loss

(60) as a function of the

of charged particles has been evaluated
particle velocity for total of 278 substances in ATOMIC DATA AND
NUCLEAR DATA TABLES. In the calculations, the up-to-date values
of <I> and the atomic absorption edges hvi were employed as
input data for the general equations of the density effect
correction.

(61) presented a formalism for obtaining the energy

Beynon
deposition distribution function for an ICF target irradiated
with multiple ion beams. In evaluating the target performance,
Beynon concluded that the geometry of the multiple beam,
i.e.,"beamlet" geometry might be as important as the detailed
description of the slowing down processes contained in the stop-
ping power of the medium.

A few-beam irradiation produces rapidly fluctuating energy

deposition profiles, which are significantly smoothed when more

than about 20 beams are used, as is in the HIBALL target design.
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(62)

Sugiyama expressed the formalism of heavy ion stopping
power asrthe sum of a modified Bethe formula and a modified LSS
formula. The thedry is made to gatisfy the requirement ét inter-
mediate energies: (a) The formula is in accord with the Bethe-
Bloch formula at high energies. (k) Some of the inner-shell
electrons of both projectile and target atom has the possibility
of forming a guasi-molecule at the colli;ions. (c) The formula is
proportional to projectile velocity at low energies, or does

contradict with the Firsov theory ( see egs.(2)-(7) for the

modified Bethe formula and the modified LSS formula in Ref.(62)).
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Glossary

The following is a brief list of the most important symbols
which have been consistently used throughout all sections of this
article.
S: Stopping power
Sb: Stopping power due to contribution of electrons bound to

plasma ion
Sf: Stopping power due to contribution of plasma free electrons
E: Projectile energy
Ef: Fermi energy
T: Plasma temperature

T : Plasma electron temperature

e
Ti: Plasma ion temperature
n: Target electron number density
p: Target mass density
Z1: Atomic number of projectile ion

Z2: Atomic number of target atom

ms Electron mass

M: Projectile mass

dyt Ionization state of target atom

dyt Average ionization state of target atom
q : Effective charge of procjectile ion

R: Range derived from stopping power

te Time

v Projectile velocity

Vin: Thermal electron velocity(=[2kBTe/m]1/2)

kB: Boltzmann constant
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NO: Avogadro number

v,: Fermi velocity:}i‘(B1T2 n)"/3
a,: Bohr radius (h /(me2)=5.29‘lx10_9 cm )
% Bohr velocity ( ez/ 1 =2.188x10° cm/sec )

k: Wave number vector

w e Frequency

w_3: Plasma frequency

p

rys Debye length = (T/(4nw r1e2))1/2

g: Plasma parameter= [ 1/((4T. /3)rgn ]

r: One-electron radius = [ 1/(4 7 /3)1'1ag)1/3 1
e (k, w): Dielectric function
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Table I1 Key Theories of Stopping Power for charged Particles over a wide

range of energy, density and temperature

64

Reference Subjects Enexgy, Density,
Temperature
(A)
Mehlhorn(l) S=8 +S_+8S, . 2-MeV protons and 10-GeV U
b £ ion
Sb= min. (SBethe' SLSS)' ionsain Au (19.3 and 0.193
Sf= binary + collective. g/cm’) .
ICF target deposition profies.
Widner =85 + S_. proton.
(2) b f '
et al. S and R of proton for ICF, Te(eV) < 545E(MeV) /A
(atomic mass).
Young 3) S = Sb + Sf. E = l—-lO5 ﬁgz pro;gz
et al. scaling formula for <I(Z,q)> in Au, Au , Au , and
ICF target design. Au30+ piasma.
proton range, radial chargé E = 1 MeV deuterons in
density profiles. target—-ablation plasma.
cold target.
¢
Peek(4) <I(Z,q)> based on FEG theory Alq+, Auq+.
and quantum mechanical
definition.
McGuire Generalized-~oscillator- E = 0.1-100 MeV protons in
et al.(s) strength formulation of plane- Alq+ (0sg=1l).
wave Born approximation,
individual subshell ionization
and excitation to proton S.
<I(Z,q)> and oscillator ”
strength. '
Mehlhorn see Ref. (3).
et al.(G) models of <I>,



Meyer-ter

—Vehn(7)

J. Meyer
(8)

~ter~Vehn

®

Nardi

et al.(g)

Nardi

et al.(lo)

Nardi

et a1. !

=8 + S_ + . e
S b £ splasma ion
ion target design for ICF.

deposition profiles.

see Ref, (7)

€-method.
S = Sb + Sf.
dense and collisional plasma
via polarization response
e(k,w).
£(k,w) of collisional form.
Sb ¢ Bethe theory.
<I>: T-F model.

¢ L-S model.
conditions relevant to pellet

fusion (deposition,temperature

and pressure profile).

relativistic M¢ilar theory and
Bohm-Pines theory (collective
plasma oscillations).

n and I by T-F model.

electron loss process by using
BEA.

ionization of projectile by the
plasma free electron.

electron capture process from
bound electrons in the plasma
ion (Bell theory, 1953).

capture by projectile of free

plasma electrons by the radiative

recombination, the dielectronic

recombination and three-body

' 65

209Bi(10 Gev) -+ 208Pb
209Bi(10 GeVv) = 7Li

for any T.

low T, high—zz—target and
high T, high-zz—terget.

E = 1-10 MeV protons

p= 0.19 g/cm3,

p= 19.0 g/cm3 Au.

E = 400 keV electrons in

cold and 1 keV 2u target.

p= 0.19 g/cm3,

19.0 g/cm3.

ke
]

E = 0-54 MeV Al ion

E = 0-12 MeV C ion.

p = 10-'2 g/cm3.

T = 25 eV, 100 eV for
C-target.

T =25 eV for fully ionized

Li-target.

q* of C-ion with E=12 MeV.



Nardi

et al.(lz)

Brueckner

et al.(13x

Skupsky(l4)

recombination process.

energy deposition profile

(C + Li and Al + C).

q* of Al-ion in fully ionized
target, 2-bound electrons in
target, cold target.

Betz formula.

€ (k,w) -method.
I: Betlre theory.
plasma effects on S.
plasma effects on charge state
of fast ions.

plasma opacity effects.

€ (k,w) -method.

€ = ef(contribution of plasma
free electrons)
+ €b(contribution of bound

electrons).

eb: T-F model.

q : Nikolaev-Dmitriev, and
Betz.

comparison with Northcliffe and
Schilling's result and cutoff

wave number in classical and

quantum kc_l.

€ (k,w) -method.
= El + 162.
by Lindhard's no-collisional

formula.

in ARPA via Te.
in ARPA

weak degeneracy, strong

for nondegerate plasma,

degeneracy, and Sommerfeld

formula.
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p = 2.78 x 10"2 g/cm3.
kT = 0.05-0,20 keV
E < 600 keV of deuterons

in CD

2 target.

low Z material.

Xe (0-15 MeV/amu) -+
Al(O.lxpg, lxps, 3xDs)
(T = 0-1290 eV).

high Z-material

Xe (0-15 MeV/amu) =+
Au(O.lxps, lxps, BXQS)
(T = 0-1568 eV).

10%°, 10%°, 10?7 em™3

107 - 109 °K

]



(15

Skupsky

Dax

et al.(ls)

Peres

et al.‘l7)

(18

Sayasov

Sayasov

Ichimaru

et al.(zo)

(19

)

)

)

in ARPA'
energy reflection depends on

the ratio of mean free path for

90° scattering and that for

energy loss AE'

€(k, W) -method.

form factor sk(m) by means of
RPA,

slowing-down cross section of

deuteron, triton and a.

€ (k ,W) ~method.

form factor Sk(w) by means of
RPA,

plasma collective screening
effect in ion~plasma ion

scattering.

small angle ion-ion scattering.

electron loss efficiency for

stopping heavy charged particle

in high~n, T plasma.

€ (k ,w) -method

no collisional and collisional
effects.

average field (for r, << 1)

and local field effects.

€ (k,w) -method.

energy loss of slow ions in an
interacting electron gas.

see Ref, (18).

hot and dense plasmas.
correlation function.

local field effect.
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E = 3,5 MeV a~particle in
high-Z, Fermi-degenerate
shell (Au-tamper, n =

5 x 1027 cm~3, T = 1 keV).

n = 10%4 - 1022 o3,

0.01 - 10 Mev.
Te = 0,

hizh density and high T

plasma.

r_ < 6,03.

s
DT plasma.
classical plasma.

degenerate quantum plasma.

v << v .
F

degenerate electron gas.



Cover

et al.(ZI)

Deutsch
et al.(22)

Maynard

et al.(23)

Gouedard

et al.(24)

Deutsch

et al.(zs)

Deutsch
et al.(26)

Arista

et al.(27)

(dE/GX)(collective excitation

/ (dE/dx)

of ion wave) (individual

ion-~ion collision)’
€ (k,w) ~method.’

e (k,w) ~method.

Lindhard's dimensionless
variable and other dimensionless
parameters.

partially degenerate electron
fluid.

€(k,w) at low T and high T limit,

€ (lk ¥ U)) -method -
exact RPA €.

exact expression for the linear
response function of dense

electron gas at any T in RPA.

e{k ,w) -method.
linear response theory.

RPA at any T.

renormalization group approach
to ionization: I. General
II. Line shifts in partially

ionized H, He, and Ne.

€ (k ,w) -method.
€ = € i€

1 + i€,
expansion of dE/dt and
S = ~l/v(dE/dt)O.
low-frequency approximation for

e(k,w) .
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108 - 1033 73,

3.5 MeV a-particle
incident on degenerate
electron-deuterium plasma
with Ti = 50 keV.

n = 1025 cm_3.

Te = 0 - 4,68 x 106 K, and
E = 0.1 - 100 MeV/amu for
heavy ions used in ICF.

n = 1027 cm~3.

Te = TF' and E = 3.5 MeV

a-particle in Al plasma.

r < 1.

any velocity ratio v/vF.
102° - 10%° o3,

E = 0.1 - 100 MeV/amu.

T=20 - 106 K.

0 and T + o,

25 29 -3

vs. T.

dense plasma

n = 1025 cm_3.

6 = kT/EF = 0.1 - 50,

v/vF = 0.1, 0.5, 1, and
10.



Brandt(zs)

Kreussler
et al.(zg)

Schulz

et al.(3o)

Brandt(Bl)

Brandt(32)

Arista

et al.(33)

material dependence of S;
variations of mean valence-
electron densities.

validity of q*-theory:
linear response approximation.

22 oscillations of S.

effective stopping power charge
fraction.

S for proton in the reduced form.

energy loss in plasmas of all

degeneracies.

test of q .
relative velocity v_ = v_(v_,v).
r r e

%
strong material dependence of q .

theory and experiment:

effective charge fraction g
expt

cexpt: lineax-response

theory on the basis of a
statistical model of ions of
given v-dependent degree of

ionization.

€(k, w) -method.
Thomas~Fermi model.

z, oscillations of S.

* .
q in condensed matters.

*
general expression for q of
slow ions in dilute plasma at T.
classical and quantum transition.

collision logarithm L(n,T,2).

2/3
0?1
Vl/VF = 0.1.
kT/EF = 0.1 -~ 50.

vr/(v

r : solid.
s

He+ and D+ in Au(rs=l.49),
c(l.66), Al1(2.12), and

Cs(5.88).

= 0.47 -~ 1.28.
He, N, Ar.
C, Al, Au.

v/v
Zy

%3

o

I

[}

S versus 22(25 - 200 kev).
relative effective charge

*
(q /2) /q versus reduced

relative velocity

2/3
vr/voz1

L 9
Te = 10" - 10" K.
n = 1013 (o} -3
v < Vth'

) =0-1.6

(0.1-1.0).



Iafrate

et al.(34)

Iafrate

et al.(35)

Ziegler(36)

ziegler(37)

Sigmund

et al.(38)

(C)

Brysk(39)

€ (k,w)-method.
Lindhard’s S
s = (4n/m) (zye’ /)% nL(n,v)

€ (k,w) -method.

spherically average charge
density model.

charge density (Herman-Skillman,
1963) and (Moruzzi-Janak-
Williams, 1978).

Lindhard formalism.

ek, w)~-method.
Lindhard's theory.
local density approximation.
free electron gas model.
new calculation I .

* *
q HI(heavy 1on)/qH (hydrogen)
electronic contribution to T=0.
stopping by use of scaling from
proton stopping powers.

S of empirical formula.

e(k,w) -method.
Lindhard's theory.
expansion of €(k,Ww) and

L(stopping number of Lindhard).

kinematic basis of collisions
betweent two bodies.

electron distribution function f
and temperature in f.

energy loss rate (density and

temperature contribution).
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1022 -

]

keV/amu.

to
]

- 100,
keV/amu.

10
100, 1000, 10000

3

1000,

4

-3
cm

10000

E > 200 keV/amu.

high electron density

2

F

X" = ez/ﬂ vV, << 1,

high velocities.



Lampe(éo)

Payne

et a1, 41

Sigma

et al.(42)

D)

Rule

et al.(43)

gquantum Lenard-Balescu equation.
llisi f £
collision frequency y__,, ©
electrons and ions in plasma is
larger than the appropriate
instability growth rate Y.

Lenard-Balescu ccllision term
and Bhatnagar-Gross~Krook
approximation (3BGK model).

the effects of departures from
local equilibrium due to
gradients in the plasma.

c¢-particle S in a homogeneous and

inhomogeneous. plasm.s.

Lenard-Balescu kinetic equation.

collective effects through
elk,w .

quantum correction for close
collisions (large angle

scattering)

classical €(k,w) of medium to
which the particles lose
energy in distant collision.
extension of Fermi's method for
deriving the densitv effect.
proximity function.
new expression collective energy
loss for clusters in the

non~relativistic limit.

71

low density.

e.g. T = 2500 °K
n = 1012 cm-3
E = 50 evV.

E =0.5~ 4.5 MeV. (a) in

a fully ionized hydrogen

T =\<ii;; 1000 ev.

o-particle slow down in
electron-deuteron plasma:
(’I‘i = 100 kev, T = 50
keV, n = 1014 cm—3),
(Ti = i4keV13T = 6 keV,
n =10 cm ), and
protons slow down in
electron-proton plasma:
0.5 kev, T

e
n=25x 1013 cm_3.

T, = = 1 keV,
i



Basbas €(k, W) -method. 0s 5'92 %1%Z0e2 \1/2
et al.(44) configuration effect on T w3 (2fMR03 )
integrations of ciusters with n = density of gas atom.
an electron gas and with single 210 2, = ion charges
. atoms (vicinage effect) and, M = reduced mass of the
similarly, with a system of di-cluster.
noninteracting atoms at n: typical condensed
condensed matter. matter density for
classical harmonic oscillator N = lO3 cm_3, 14 ev,
model and quantum mechanical z; =2z, = 1, RO =13
perturbation theory. v=y>5 o and £ = 0,1,
spatial configuration of ions
making up the cluster.
S of a di~-cluster in a valence
electron gas.
fluctuations in cluster energy
loss.
Rule analytic expression for the E = 5 MeV - proton with
et al.(45> vicinage function. beam density n, = 6.44 x
two particle vicinage 10l4 cm—3 in weakly
contribution to S. ionized H2 (n = 2.67 x
dipole-liike behavior for large 1019 cm_3, n=111 x
. separations between beam 1015, X 1016 cm—3, KT =
particles. 0.75 eV).
beam-density effect on energy
loss.
Sung Landau transport theory to
et al.(46) include the quantum mechanical
transition effect.
general approach developed
elk, w) ~method.
energy loss spectrum of a cluster
of correlated charged particles.
number operator formulation.
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{E)

'l
Cowern‘47)

Geissel

et al.‘48)

Arnold

et al.(4g)

Anthony
et al.(so)

Bailey

et al.(SI)

charge~changing cross sections
*
and q .

charge fraction.

*
q for Zl (0.6 MeV/amu) - 22

Z1 = Kz, Xe, Pb, U-ions in Ar
gas (1.4 MeV/amu)

* 2
SHI, v, 22 (q) sp, v, 22’
where SHI, v, 22 and Sp' v, 272

are the stopping powers of heavy

ions and protons at the same
veleocity(v) in the same medium
(Zz).
S versus q.
observation of a gas-solid
difference in the stopping
powers of (1-10) MeV/amu heavy

ions.

heavy ion bzam heated cylinders
experiments

ion~-beam energy deposition.
density profile.

temperature profile.

experiment.
empirical formula of q/Zl, and
*
{q /Zl).

S for Zl

[}

c, si, C1, 7Ti,
Ge, Br, Nb.
C, Al, Cu, Ag, Au.

I, Fe,

[
]

average atom model to integrate

the rate equations.

limit n »+ 0 and

z

.

20

0.5-10 MeV/amu heavy ion

n + w.

solid

hot dense matters

E:

at energies near

maximum in S.

1-100 MeV/amu.
1, 100, 300 ev.



Bailey
et al.

Brice

(52)

(53)

xygoriev

et al.

(54)

Burenkov

et al.

(55)

Ferrariis

et al.

(56)

electron rates for bound-bound
excitation, bound-free
ionization, radiative
recombination and 3-body
recombination.

ion rates for bound-bound
excitation, de-excitation and
bound~free ionization.

stripring rate.

*
q /2.

see Ref., (51).

three parameter semi-
phenomenological manner.

modified Firsov formalism.

S = S (core electron) + Sf
Sf = S (electron-hole

generation) + Ppl'

v £ VO: elastic collision

v >> v ionization
nodified Firsov's theory.
Bonderup statistical model,
Brandt-Reinheimer formalism,
role of different electronic
subshells in a solid for

proton energy loss.

semiclassical theory for energy
loss of heavy nonrelativistic
ions.

BEA.

modified Firsov theory.

nondegenerate plasma
BEA between test particle and

particles in plasma.

74

n==6=zx 1023 cm_3.

fully ionized Al.

low and high energies

E = (200-400) keV-proton »

Z2 for s.
E = (50-500) keV-proton +

29Cu, 27Co, 23V for S.

E = 0.01-12 MeV/amu

Z, =F, Mg, S
22 = Ne, Ni, Fe, Ag.
Zl = S
22 = Ne, Ar-gas.
= 10% - 10% &
v = 0.1 - 100 a.u.



Tahir

et al.(57)

Wright

et al.(ss)

Santarius

ot al_(59)

Sternheimer

et al.(60)

Beyon(sl)

Sugiyama(62

)

quantum mechanical analysis of
the scattering of partial wave.

energy loss (v, q, n, T).

energy deposition code GORGON
(9), (10), and

Long and Tahir: Nuclear

also see Ref.

Research Centre Karlsruhe
Report (1981) KfK 3232,
Long: GSI Report {1981) 81-3.

p.19.

charge exchange and energy loss
of C ions.

semiempirical charge exchange
cross section.

3-D Monte Carlo transport code.

-dE / dx X 6 kchm-3 /g
(density in g/cm3) for C in
N,-gas.

bounce averaged Fokker-Planck
equation for a-particle slow-
ing down in electron and ion

plasma.

numerical evaluation of the
density effect.

fitting formula.

Bethe's stopping power formula

ionization potential I and S.

formalism of energy distribution

function for ICF target.

modified Bethe formula.

modified LSS formula.
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heavy ion beam Pb in LiPb,
DT,

o =102 - 10* (g/cc)
=] ev - 10 keV
p =102 - 108 (M)

light ion-beam for ICF.

E = 0.5-2,0 MeV/amu

Te = 300 kevV,.
electro-static potential:

100 kev.

Z = 1-98,
chemical compounds and
substances of biological

interest.

E = 0.04-5 MeV/amu.
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s (a.u.), related to the electron density n (upper

The line x2 = 1 separates the

conditions in strongly interacting plasmas from those in

weakly interacting plasmas.
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indicate the transition region between the plasma where

classical theories describe the energy loss (lower right~hand

quadrant) and all other plasmas where quantum-mechanical
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the plasmas are degenerate or cold, whereas above the line
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Fig,.2 Summary(ss) of the theories of the stopping power of ions in

an electron plasma, based on the description of the collision
logarithum &nA. For 1lnA, CLl and CL2 represent the cases of
low velocities (v < v, < Zlvo) and intermediate (vth <v

th
< Z.,v.) at low temperatures in the classical approximation,

res;egtively. QMl and'QM2 represent the cases of low (v <
Zlvo < vth) and high velocities (v > Vth > 2,v, ) at high
temperatures in the quantum-mechnical approximation,
respectively. The Bohr theory corresponds to CL2 limit and
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velocity or increasing (or decreasing) plasma temperature.

These regions are described as "transition region”.
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Comparison of proton stopping power in Al as a function of
energy: augmented-LOM model (solid line), GOS model
(diamond), Ziegler's analytic fit to experiment (dotted line).
Plot a is for neutral Al, b for Al3+ plasma, ¢ for A17+, and 4

for A.‘Lll+ plasma, respectively.
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(diamonds), Ziegler's analytic fit to experiment (dotted
line). Plot a is for neutral Au, b for Aulo+ plasma, ¢ for

+ +
Au20 , and d for Au30 plasma, respectively.
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Fig.9 Deposition profiles for 2-MeV protons in Au at a density of
0.193 g/c:m3 as a function of temperature.
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Variation of the range of 2~MeV protons in Au as a function of

Fig.1l0
density and temperature.
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Fig.1ll Variation of the range of 10-GeV U ions in Au as a function of

density and temperature.
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Fig.12
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Enexgy loss as a function of proton energy in Au targets at
the temperature of 1 keV. Free electron contribution is
estimated according to; (a) Binary collision theory with
plasma oscillations, (b) Dielectric function without plasma
collisions, quantum form (collisional effects are negligible
in the low density case), (c) Dielectric function with plasma
collisions, classical form with cutoff at kB’ (d) Experimental

energy loss in a cold target.

84



°3Tnsax s, BUTTTTUDS pue SIFTTOUIAON (SN 2and) ¢ b s,AsTI3TUQ

>
pue ASBTOYIN burtsn (gN =2aand) u._.. Y unauenb ay3z pue b s,z389
- ¥
butsn ﬁmm aaxXnD) T > 9 IT 1 %5 umajuenb pue T < A \Nm b=3
- ¥*
JT . EU TedSIsSsSeTo ay3 pur b s,z3sg bursn A.hm 9AIND)
- *
*Ty uo suoT N (q) Pue suoT ¥x (®) xojy sasmod Hutddozs PO AYL €1°b1a
{rmresaou) 3
{re2/2%)3
3 ] L 9 s ¥
1t 1 v 1 v 1 7 1
(®
&
~
. L3
P te / L)
w: — \ -~ Oy nz
m IDI."OI . lw
o |Il'llll|ll.ll" \ 7 -
2 - ‘s ...l..l\ g
= n‘ [ ]
. / \.\\ A
/ll’, \c -l N - o
B //hol — oot v uo oy .
|

~f o0zt

85



‘A® uTr J ssxnjeasdwsy Hurpuodsaxzod
ay3 Aq peraqgeT axe saaino 9yl °nuwe xad Abasus syz JO UOTIDUNT
e se ‘A]TSusp pPTIOS SawTl 29Iyl (D) pue ’‘LJTSUap PTICS

() “A3TSusp PITOS T°0 () 3° T¥ UO ox 103 xomod Burddols oug #1°bTa

(re2/ 801 3 (nee/aon} 3 (rwe/am)3
- 02
= N
s »
L .
. SN’ Lo
S~
a | a oot
s L g 8
& [ m
S ¥ ¥ toat —
£ [ £ ; Z
'] '] H
s F N N ., o lHon B
< / ] X ", <. W
- H - - -.‘o H —
- .. N /\ 1 o - kY ,wo:.
L . 4 L " 3
5 : — . §
= N, t = asonanman %, H
.Ill-l.ll-.o .../ —m  c— c— ““ .... m %t
| e g7 \ HR R —— % i
[ = R/ N P et S o
g N, i 26 v ]
= cemvenenaeenee DED] s, i 5 ot
- 4 e -on .«. E - -4 022
R %c -y ] 5 LV el . $41°0 =¢ 4
_—0 tv voox ozt . @ ly vo 2y ~ o1 L. (9 lv vo 0 ooz
I oo 1 o 1 o 1 o ! 2 8 3 % 4 RTINS DTS DT I DK T BN T N SN U I e | S A TS N WA N U N VS NS T A

86



39Ul ST 2AIND Yoes I03 pusbsT oy

*A® UT axnzexsdwel

‘nue xod Abxsus syl

JO uoT3louny ® S ‘AJTSUSD PTTOS S8WT3 83xy3 (o) ‘A3Tsusp PITOS

(q)

(rwefami)3

A3Tsusp PTIOS T°0 (B) 3 TIY uo i x03 xamod butddozs ayg gT°613
{rare /o) 3 {rwe/aou )3

v 21 o1 8 9 y 2 )
050 JRULINN LN RN AL NN BN RELENE BRI

2

s

&

3z
8, s
g [, ]
i ......... //\_ ]
.// " - , :
| mmm——-y2 o, ,/\m | e m—e———11 ", ]
o e mm £ ", H F e——e—g2 ., ]
- ~e ————gg2 N i ooz e —— g5 ]
-2y o S [Fe——a .... 4
L eeeeeevene gE2 ., ¥ e 256 ]
- wuon E i 1.0 =g ...... m.. ]
- @ oz C (® vuon .

| ST D T I N B W L 1 | S T OO TN Y WO N N DS T | 2

p—— out
- ll'llmv“ o
[t
u o ——stS 102
5 ,‘l”loz“ B
— % .e 102z
-~ lywn h
poer AUV -1 0
P2 1 a1 s 1 3 s 2 1

(h/xn ) D/

F
~

&

0sC

00y

(b0 am) /1P

87



*A® ut sanjexadursy 9yl
ST ®AIND Yoe® J0F pusHsT ayy -nuwe gad Abxsus ay3z 10 uorisungy
® se ‘A3Tsusp pPTTOS SawWIl 899Iyl (O) puer ‘A3TSuUsp PITOS

(qQ) ‘AaTsusp PTIIOS 1°0 (®©) e by uo n xoz zsmod butddols syg oT"b1a

{ree/aod) 3 {rare/aon )3 {re/aon) 3

143 [4 ot S L \J 14 o

i
/
j

(bas 0 Aaw) e/
1]
l&llz\n AW xpe/ 2P

“"’z“’ AIR) XPe/ 3

(24

/’,
/
¢

S ey 11 - / j— st
. ——g7
[+ i
Ill\

88



*A® utr sanjexsdwsy aY3l ST SPAIND aY3 I0F pusbaT oYz pue
SOT1TSUSP PTTOS 3® @I® S9SBD TIY¥Y °hy U0 N1 () pueR ‘ny uo ax

{e) xoz nure xad Abxsus ayz o uoriosuny e se gomod Hurddols syg LT bTa

(nwe/pay) 3 (e saon) 3

(11 44 ot L 9 z
| INLI N AU N B R M L AU ML NN R

'ﬁ"’z" AM) 1pa/ 3P
“‘"1" A ) ¥pa/3p

———
———————ryl

-1 08

89



T T 1 I i i i 1
P=19, g/cm3 £=0.19¢/cm3

(a) (b)

20 o= kT = lkeV 4 —— kT s 1keV -]

kT =0

--- K[=0

Energy Deposition (arbitrary units)

z/ro

Fig.18  Deposition profiles of 400-keV electrons in cold and l-keV Au
targets. (a) p = 19.0 g/cm3, and (b) p = 0.19 g/cm3. Dots

represent results with cold multiple scattering.
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(b) 2bound electrons in target
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Fig.19 The charge state Ze of an Al ion with the initial energy of

££
54 MeV as a function of its energy as it is slowed in C
targets at various temperatures. The transition from Z=3 is
very fast and not shown. The empirical curve of Betz is shown

for comparison.

| E— I T l T
(a) fully ionized target
r— wnnd
4k (b) Betz |
®
N
- .
2 -
o) 1 4 ! ! | !
0] 4 8 12
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*
Fig.20 The charge state g of C ions with initial energy of 12 MeV as
a function of its energy as it is slowed in a fully ionized Li
target as compared with the empirical curve of Betz for a Au

target.
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Fig.21 Energy deposition profiles. Top: 12-MeV C beam in fully
ionized and in cold Li targets. Bottom: 54-MeV Al beam in

fully ionized and in cold C targets.
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Fig.24 Curve l: Lindhard approximation corresponding to assumption
G=0 in the formula (4.34); curve 2: formula (4.34). Open
circles are experimental values. Energy losses dE/dx are

expressed in units of eV/R (2=1).
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Fig.25 Ratio (dE/dx)co/(dE/dx)ip vs density for 3,5-MeV a-particles
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keV.
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Fig.26 Stopping power dE/dx (a.u.) at n = lO25 cm_'3 and various

temperatures.
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Fig.27 Ranges at n = 1025, and lO29 cm-'3 and various temperatures.
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Fig.28 Deposit time (sec) at n = 10 cm and various temperatures

as a function of proton beam energy (MeV).
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L(nT1,2)

T(K)

Values of the collisior logarithm L(n, T, 2) for electron

Fig.29

3

, for protons (Z=Zl=l), and for light and

heavy ions (Zl=lO, Zl=80). The lines labeled 1 and 2

density n = lOl3 em

*
correspond to Z=Zl and Z=q , respectively.
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Comparison of spatial variation in the stopping number
integrand of eq. (4.60), and the solid-state radial charge
density for Al (V.L. Moruzzi, J.F. Janak, and A.R. Williams:
Calculated Electronic Properties.of Metals (Pergamon,

New York, 1978)) with ion energy of 100 keV/aru.
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Comparison of spatial variation in the stopping number
integrand of eq. (4.60), the stopping number of eg. (4.60),
and the solid-state radial charge density for Al (see the

reference in in Fig.3l) with ion energy of 10000 keV/amu.
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Fig.33 The ratio of the beam-density contribution WB to the
single~-particle energy loss WS vs the distance of a beam
particle from the beam front. The curves were generated for a
5-~MeV proton beam with beam density n, = 6.44 x 1014 cm_3
interacting with partially ionized H2 containing n free

electrons per cubic centimeter.
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Calculated energy loss of Mg-ions in Ti. The broken curve:
the energy loss due to electron exchange; the chain curve: the
energy loss due to excitation or ionization of the medium

electrons by projectile nucleus field; the solid curve: total
energy loss.
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curve: NS data; the chain curve: calculations according to
Firsov theory; the solid curve: calculations by Burenkov

et al. Experimental points are from Foster et al. (Nucl.
Inst. Meth. 136 (1976) 349) for solid targets and from Pierce
and Blann (Phys. Rev. 173 (1968) 390) for gaseous targets.
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